Spaces:
Running
Running
from statistics import mode | |
import torch | |
import torch.nn.functional as F | |
import os | |
import sys | |
sys.path.append("./aot") | |
from aot.networks.engines.aot_engine import AOTEngine,AOTInferEngine | |
from aot.networks.engines.deaot_engine import DeAOTEngine,DeAOTInferEngine | |
import importlib | |
import numpy as np | |
from PIL import Image | |
from skimage.morphology.binary import binary_dilation | |
np.random.seed(200) | |
_palette = ((np.random.random((3*255))*0.7+0.3)*255).astype(np.uint8).tolist() | |
_palette = [0,0,0]+_palette | |
import aot.dataloaders.video_transforms as tr | |
from aot.utils.checkpoint import load_network | |
from aot.networks.models import build_vos_model | |
from aot.networks.engines import build_engine | |
from torchvision import transforms | |
class AOTTracker(object): | |
def __init__(self, cfg, gpu_id=0): | |
self.gpu_id = gpu_id | |
self.model = build_vos_model(cfg.MODEL_VOS, cfg).cuda(gpu_id) | |
self.model, _ = load_network(self.model, cfg.TEST_CKPT_PATH, gpu_id) | |
# self.engine = self.build_tracker_engine(cfg.MODEL_ENGINE, | |
# aot_model=self.model, | |
# gpu_id=gpu_id, | |
# short_term_mem_skip=4, | |
# long_term_mem_gap=cfg.TEST_LONG_TERM_MEM_GAP) | |
self.engine = build_engine(cfg.MODEL_ENGINE, | |
phase='eval', | |
aot_model=self.model, | |
gpu_id=gpu_id, | |
short_term_mem_skip=1, | |
long_term_mem_gap=cfg.TEST_LONG_TERM_MEM_GAP, | |
max_len_long_term=cfg.MAX_LEN_LONG_TERM) | |
self.transform = transforms.Compose([ | |
tr.MultiRestrictSize(cfg.TEST_MAX_SHORT_EDGE, | |
cfg.TEST_MAX_LONG_EDGE, cfg.TEST_FLIP, | |
cfg.TEST_MULTISCALE, cfg.MODEL_ALIGN_CORNERS), | |
tr.MultiToTensor() | |
]) | |
self.model.eval() | |
def add_reference_frame(self, frame, mask, obj_nums, frame_step, incremental=False): | |
# mask = cv2.resize(mask, frame.shape[:2][::-1], interpolation = cv2.INTER_NEAREST) | |
sample = { | |
'current_img': frame, | |
'current_label': mask, | |
} | |
sample = self.transform(sample) | |
frame = sample[0]['current_img'].unsqueeze(0).float().cuda(self.gpu_id) | |
mask = sample[0]['current_label'].unsqueeze(0).float().cuda(self.gpu_id) | |
_mask = F.interpolate(mask,size=frame.shape[-2:],mode='nearest') | |
if incremental: | |
self.engine.add_reference_frame_incremental(frame, _mask, obj_nums=obj_nums, frame_step=frame_step) | |
else: | |
self.engine.add_reference_frame(frame, _mask, obj_nums=obj_nums, frame_step=frame_step) | |
def track(self, image): | |
output_height, output_width = image.shape[0], image.shape[1] | |
sample = {'current_img': image} | |
sample = self.transform(sample) | |
image = sample[0]['current_img'].unsqueeze(0).float().cuda(self.gpu_id) | |
self.engine.match_propogate_one_frame(image) | |
pred_logit = self.engine.decode_current_logits((output_height, output_width)) | |
# pred_prob = torch.softmax(pred_logit, dim=1) | |
pred_label = torch.argmax(pred_logit, dim=1, | |
keepdim=True).float() | |
return pred_label | |
def update_memory(self, pred_label): | |
self.engine.update_memory(pred_label) | |
def restart(self): | |
self.engine.restart_engine() | |
def build_tracker_engine(self, name, **kwargs): | |
if name == 'aotengine': | |
return AOTTrackerInferEngine(**kwargs) | |
elif name == 'deaotengine': | |
return DeAOTTrackerInferEngine(**kwargs) | |
else: | |
raise NotImplementedError | |
class AOTTrackerInferEngine(AOTInferEngine): | |
def __init__(self, aot_model, gpu_id=0, long_term_mem_gap=9999, short_term_mem_skip=1, max_aot_obj_num=None): | |
super().__init__(aot_model, gpu_id, long_term_mem_gap, short_term_mem_skip, max_aot_obj_num) | |
def add_reference_frame_incremental(self, img, mask, obj_nums, frame_step=-1): | |
if isinstance(obj_nums, list): | |
obj_nums = obj_nums[0] | |
self.obj_nums = obj_nums | |
aot_num = max(np.ceil(obj_nums / self.max_aot_obj_num), 1) | |
while (aot_num > len(self.aot_engines)): | |
new_engine = AOTEngine(self.AOT, self.gpu_id, | |
self.long_term_mem_gap, | |
self.short_term_mem_skip) | |
new_engine.eval() | |
self.aot_engines.append(new_engine) | |
separated_masks, separated_obj_nums = self.separate_mask( | |
mask, obj_nums) | |
img_embs = None | |
for aot_engine, separated_mask, separated_obj_num in zip( | |
self.aot_engines, separated_masks, separated_obj_nums): | |
if aot_engine.obj_nums is None or aot_engine.obj_nums[0] < separated_obj_num: | |
aot_engine.add_reference_frame(img, | |
separated_mask, | |
obj_nums=[separated_obj_num], | |
frame_step=frame_step, | |
img_embs=img_embs) | |
else: | |
aot_engine.update_short_term_memory(separated_mask) | |
if img_embs is None: # reuse image embeddings | |
img_embs = aot_engine.curr_enc_embs | |
self.update_size() | |
class DeAOTTrackerInferEngine(DeAOTInferEngine): | |
def __init__(self, aot_model, gpu_id=0, long_term_mem_gap=9999, short_term_mem_skip=1, max_aot_obj_num=None): | |
super().__init__(aot_model, gpu_id, long_term_mem_gap, short_term_mem_skip, max_aot_obj_num) | |
def add_reference_frame_incremental(self, img, mask, obj_nums, frame_step=-1): | |
if isinstance(obj_nums, list): | |
obj_nums = obj_nums[0] | |
self.obj_nums = obj_nums | |
aot_num = max(np.ceil(obj_nums / self.max_aot_obj_num), 1) | |
while (aot_num > len(self.aot_engines)): | |
new_engine = DeAOTEngine(self.AOT, self.gpu_id, | |
self.long_term_mem_gap, | |
self.short_term_mem_skip) | |
new_engine.eval() | |
self.aot_engines.append(new_engine) | |
separated_masks, separated_obj_nums = self.separate_mask( | |
mask, obj_nums) | |
img_embs = None | |
for aot_engine, separated_mask, separated_obj_num in zip( | |
self.aot_engines, separated_masks, separated_obj_nums): | |
if aot_engine.obj_nums is None or aot_engine.obj_nums[0] < separated_obj_num: | |
aot_engine.add_reference_frame(img, | |
separated_mask, | |
obj_nums=[separated_obj_num], | |
frame_step=frame_step, | |
img_embs=img_embs) | |
else: | |
aot_engine.update_short_term_memory(separated_mask) | |
if img_embs is None: # reuse image embeddings | |
img_embs = aot_engine.curr_enc_embs | |
self.update_size() | |
def get_aot(args): | |
# build vos engine | |
engine_config = importlib.import_module('configs.' + 'pre_ytb_dav') | |
cfg = engine_config.EngineConfig(args['phase'], args['model']) | |
cfg.TEST_CKPT_PATH = args['model_path'] | |
cfg.TEST_LONG_TERM_MEM_GAP = args['long_term_mem_gap'] | |
cfg.MAX_LEN_LONG_TERM = args['max_len_long_term'] | |
# init AOTTracker | |
tracker = AOTTracker(cfg, args['gpu_id']) | |
return tracker | |