aiqtech's picture
Update app.py
ccdd80f verified
import streamlit as st
from huggingface_hub import HfApi
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor, as_completed
from functools import lru_cache
import time
import requests
from collections import Counter
import numpy as np
st.set_page_config(page_title="HF Contributions", layout="wide", initial_sidebar_state="expanded")
# ν–₯μƒλœ UI μŠ€νƒ€μΌλ§
st.markdown("""
<style>
/* μ‚¬μ΄λ“œλ°” μŠ€νƒ€μΌλ§ */
[data-testid="stSidebar"] {
min-width: 35vw !important;
max-width: 35vw !important;
background-color: #f8f9fa;
padding: 1rem;
border-right: 1px solid #e9ecef;
}
/* 헀더 μŠ€νƒ€μΌλ§ */
h1, h2, h3 {
color: #1e88e5;
font-weight: 700;
}
h1 {
font-size: 2.5rem;
margin-bottom: 1.5rem;
border-bottom: 2px solid #e0e0e0;
padding-bottom: 0.5rem;
}
h2 {
font-size: 1.8rem;
margin-top: 1.5rem;
}
h3 {
font-size: 1.4rem;
margin-top: 1rem;
}
/* μΉ΄λ“œ μŠ€νƒ€μΌλ§ */
div[data-testid="stMetric"] {
background-color: #f1f8fe;
border-radius: 10px;
padding: 1rem;
box-shadow: 0 2px 5px rgba(0,0,0,0.05);
margin-bottom: 1rem;
}
/* 차트 μ»¨ν…Œμ΄λ„ˆ μŠ€νƒ€μΌλ§ */
.chart-container {
background-color: white;
border-radius: 10px;
padding: 1rem;
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
margin: 1rem 0;
}
/* ν…Œμ΄λΈ” μŠ€νƒ€μΌλ§ */
div[data-testid="stDataFrame"] {
background-color: white;
border-radius: 10px;
padding: 0.5rem;
box-shadow: 0 2px 5px rgba(0,0,0,0.05);
}
/* νƒ­ μŠ€νƒ€μΌλ§ */
button[data-baseweb="tab"] {
font-weight: 600;
}
/* μ„œλΈŒν—€λ” λ°°κ²½ */
.subheader {
background-color: #f1f8fe;
padding: 0.5rem 1rem;
border-radius: 5px;
margin-bottom: 1rem;
}
/* 정보 뱃지 */
.info-badge {
background-color: #e3f2fd;
color: #1976d2;
padding: 0.3rem 0.7rem;
border-radius: 20px;
display: inline-block;
font-weight: 500;
margin-right: 0.5rem;
}
/* ν”„λ‘œκ·Έλ ˆμŠ€ λ°” */
div[data-testid="stProgress"] {
height: 0.5rem !important;
}
/* λ²„νŠΌ μŠ€νƒ€μΌλ§ */
.stButton button {
background-color: #1e88e5;
color: white;
border: none;
font-weight: 500;
}
/* κ²½κ³ /성곡 λ©”μ‹œμ§€ κ°œμ„  */
div[data-testid="stAlert"] {
border-radius: 10px;
margin: 1rem 0;
}
/* μΉ΄ν…Œκ³ λ¦¬ 뢄석 μ„Ήμ…˜ */
.category-section {
background-color: white;
border-radius: 10px;
padding: 1rem;
margin-bottom: 1.5rem;
box-shadow: 0 2px 5px rgba(0,0,0,0.05);
}
</style>
""", unsafe_allow_html=True)
api = HfApi()
# Cache for API responses
@lru_cache(maxsize=1000)
def cached_repo_info(repo_id, repo_type):
return api.repo_info(repo_id=repo_id, repo_type=repo_type)
@lru_cache(maxsize=1000)
def cached_list_commits(repo_id, repo_type):
return list(api.list_repo_commits(repo_id=repo_id, repo_type=repo_type))
@lru_cache(maxsize=100)
def cached_list_items(username, kind):
if kind == "model":
return list(api.list_models(author=username))
elif kind == "dataset":
return list(api.list_datasets(author=username))
elif kind == "space":
return list(api.list_spaces(author=username))
return []
# Function to fetch trending accounts and create stats
@lru_cache(maxsize=1)
def get_trending_accounts(limit=100):
try:
trending_data = {"spaces": [], "models": []}
# Get spaces for stats calculation
spaces_response = requests.get("https://huggingface.co/api/spaces",
params={"limit": 10000},
timeout=30)
# Get models for stats calculation
models_response = requests.get("https://huggingface.co/api/models",
params={"limit": 10000},
timeout=30)
# Process spaces data
spaces_owners = []
if spaces_response.status_code == 200:
spaces = spaces_response.json()
# Count spaces by owner
owner_counts_spaces = {}
for space in spaces:
if '/' in space.get('id', ''):
owner, _ = space.get('id', '').split('/', 1)
else:
owner = space.get('owner', '')
if owner != 'None':
owner_counts_spaces[owner] = owner_counts_spaces.get(owner, 0) + 1
# Get top owners by count for spaces
top_owners_spaces = sorted(owner_counts_spaces.items(), key=lambda x: x[1], reverse=True)[:limit]
trending_data["spaces"] = top_owners_spaces
spaces_owners = [owner for owner, _ in top_owners_spaces]
# Process models data
models_owners = []
if models_response.status_code == 200:
models = models_response.json()
# Count models by owner
owner_counts_models = {}
for model in models:
if '/' in model.get('id', ''):
owner, _ = model.get('id', '').split('/', 1)
else:
owner = model.get('owner', '')
if owner != 'None':
owner_counts_models[owner] = owner_counts_models.get(owner, 0) + 1
# Get top owners by count for models
top_owners_models = sorted(owner_counts_models.items(), key=lambda x: x[1], reverse=True)[:limit]
trending_data["models"] = top_owners_models
models_owners = [owner for owner, _ in top_owners_models]
# Combine rankings for overall trending based on appearance in both lists
combined_score = {}
for i, owner in enumerate(spaces_owners):
if owner not in combined_score:
combined_score[owner] = 0
combined_score[owner] += (limit - i) # Higher rank gives more points
for i, owner in enumerate(models_owners):
if owner not in combined_score:
combined_score[owner] = 0
combined_score[owner] += (limit - i) # Higher rank gives more points
# Sort by combined score
sorted_combined = sorted(combined_score.items(), key=lambda x: x[1], reverse=True)[:limit]
trending_authors = [owner for owner, _ in sorted_combined]
return trending_authors, trending_data["spaces"], trending_data["models"]
except Exception as e:
st.error(f"Error fetching trending accounts: {str(e)}")
fallback_authors = ["ritvik77", "facebook", "google", "stabilityai", "Salesforce", "tiiuae", "bigscience"]
return fallback_authors, [(author, 0) for author in fallback_authors], [(author, 0) for author in fallback_authors]
# Rate limiting
class RateLimiter:
def __init__(self, calls_per_second=10):
self.calls_per_second = calls_per_second
self.last_call = 0
def wait(self):
current_time = time.time()
time_since_last_call = current_time - self.last_call
if time_since_last_call < (1.0 / self.calls_per_second):
time.sleep((1.0 / self.calls_per_second) - time_since_last_call)
self.last_call = time.time()
rate_limiter = RateLimiter()
# Function to fetch commits for a repository (optimized)
def fetch_commits_for_repo(repo_id, repo_type, username, selected_year):
try:
rate_limiter.wait()
# Skip private/gated repos upfront
repo_info = cached_repo_info(repo_id, repo_type)
if repo_info.private or (hasattr(repo_info, 'gated') and repo_info.gated):
return [], 0
# Get initial commit date
initial_commit_date = pd.to_datetime(repo_info.created_at).tz_localize(None).date()
commit_dates = []
commit_count = 0
# Add initial commit if it's from the selected year
if initial_commit_date.year == selected_year:
commit_dates.append(initial_commit_date)
commit_count += 1
# Get all commits
commits = cached_list_commits(repo_id, repo_type)
for commit in commits:
commit_date = pd.to_datetime(commit.created_at).tz_localize(None).date()
if commit_date.year == selected_year:
commit_dates.append(commit_date)
commit_count += 1
return commit_dates, commit_count
except Exception as e:
return [], 0
# Function to get commit events for a user (optimized)
def get_commit_events(username, kind=None, selected_year=None):
commit_dates = []
items_with_type = []
kinds = [kind] if kind else ["model", "dataset", "space"]
for k in kinds:
try:
items = cached_list_items(username, k)
items_with_type.extend((item, k) for item in items)
repo_ids = [item.id for item in items]
# Optimized parallel fetch with chunking
chunk_size = 5 # Process 5 repos at a time
for i in range(0, len(repo_ids), chunk_size):
chunk = repo_ids[i:i + chunk_size]
with ThreadPoolExecutor(max_workers=min(5, len(chunk))) as executor:
future_to_repo = {
executor.submit(fetch_commits_for_repo, repo_id, k, username, selected_year): repo_id
for repo_id in chunk
}
for future in as_completed(future_to_repo):
repo_commits, repo_count = future.result()
if repo_commits: # Only extend if we got commits
commit_dates.extend(repo_commits)
except Exception as e:
st.warning(f"Error fetching {k}s for {username}: {str(e)}")
# Create DataFrame with all commits
df = pd.DataFrame(commit_dates, columns=["date"])
if not df.empty:
df = df.drop_duplicates() # Remove any duplicate dates
return df, items_with_type
# Calendar heatmap function (optimized)
def make_calendar_heatmap(df, title, year):
if df.empty:
st.info(f"No {title.lower()} found for {year}.")
return
# Optimize DataFrame operations
df["count"] = 1
df = df.groupby("date", as_index=False).sum()
df["date"] = pd.to_datetime(df["date"])
# Create date range more efficiently
start = pd.Timestamp(f"{year}-01-01")
end = pd.Timestamp(f"{year}-12-31")
all_days = pd.date_range(start=start, end=end)
# Optimize DataFrame creation and merging
heatmap_data = pd.DataFrame({"date": all_days, "count": 0})
heatmap_data = heatmap_data.merge(df, on="date", how="left", suffixes=("", "_y"))
heatmap_data["count"] = heatmap_data["count_y"].fillna(0)
heatmap_data = heatmap_data.drop("count_y", axis=1)
# Calculate week and day of week more efficiently
heatmap_data["dow"] = heatmap_data["date"].dt.dayofweek
heatmap_data["week"] = (heatmap_data["date"] - start).dt.days // 7
# Create pivot table more efficiently
pivot = heatmap_data.pivot(index="dow", columns="week", values="count").fillna(0)
# Optimize month labels calculation
month_labels = pd.date_range(start, end, freq="MS").strftime("%b")
month_positions = pd.date_range(start, end, freq="MS").map(lambda x: (x - start).days // 7)
# Create custom colormap with specific boundaries
from matplotlib.colors import ListedColormap, BoundaryNorm
colors = ['#ebedf0', '#9be9a8', '#40c463', '#30a14e', '#216e39'] # GitHub-style green colors
bounds = [0, 1, 3, 11, 31, float('inf')] # Boundaries for color transitions
cmap = ListedColormap(colors)
norm = BoundaryNorm(bounds, cmap.N)
# Create plot more efficiently
fig, ax = plt.subplots(figsize=(12, 1.5))
# Convert pivot values to integers to ensure proper color mapping
pivot_int = pivot.astype(int)
# Create heatmap with explicit vmin and vmax
sns.heatmap(pivot_int, ax=ax, cmap=cmap, norm=norm, linewidths=0.5, linecolor="white",
square=True, cbar=False, yticklabels=["M", "T", "W", "T", "F", "S", "S"])
ax.set_title(f"{title}", fontsize=14, pad=10)
ax.set_xlabel("")
ax.set_ylabel("")
ax.set_xticks(month_positions)
ax.set_xticklabels(month_labels, fontsize=10)
ax.set_yticklabels(ax.get_yticklabels(), rotation=0, fontsize=10)
# μ‹œκ°μ  ν–₯상을 μœ„ν•œ figure μŠ€νƒ€μΌλ§
fig.tight_layout()
fig.patch.set_facecolor('#F8F9FA')
st.pyplot(fig)
# Function to create a fancy contribution radar chart
def create_contribution_radar(username, models_count, spaces_count, datasets_count, commits_count):
# Create radar chart for contribution metrics
categories = ['Models', 'Spaces', 'Datasets', 'Activity']
values = [models_count, spaces_count, datasets_count, commits_count]
# Normalize values for better visualization
max_vals = [100, 100, 50, 500] # Reasonable max values for each category
normalized = [min(v/m, 1.0) for v, m in zip(values, max_vals)]
# Create radar chart
angles = np.linspace(0, 2*np.pi, len(categories), endpoint=False).tolist()
angles += angles[:1] # Close the loop
normalized += normalized[:1] # Close the loop
fig, ax = plt.subplots(figsize=(6, 6), subplot_kw={'polar': True}, facecolor='#F8F9FA')
# Add background grid with improved styling
ax.set_theta_offset(np.pi / 2)
ax.set_theta_direction(-1)
ax.set_thetagrids(np.degrees(angles[:-1]), categories, fontsize=12, fontweight='bold')
# κ·Έλ¦¬λ“œ μŠ€νƒ€μΌλ§ κ°œμ„ 
ax.grid(color='#CCCCCC', linestyle='-', linewidth=0.5, alpha=0.7)
# Draw the chart with improved color scheme
ax.fill(angles, normalized, color='#4CAF50', alpha=0.25)
ax.plot(angles, normalized, color='#4CAF50', linewidth=3)
# Add value labels with improved styling
for i, val in enumerate(values):
angle = angles[i]
x = (normalized[i] + 0.1) * np.cos(angle)
y = (normalized[i] + 0.1) * np.sin(angle)
ax.text(angle, normalized[i] + 0.1, str(val),
ha='center', va='center', fontsize=12,
fontweight='bold', color='#1976D2')
# Add highlight circles
circles = [0.25, 0.5, 0.75, 1.0]
for circle in circles:
ax.plot(angles, [circle] * len(angles), color='gray', alpha=0.3, linewidth=0.5, linestyle='--')
ax.set_title(f"{username}'s Contribution Profile", fontsize=16, pad=20, fontweight='bold')
# λ°°κ²½ 원 μ—†μ• κΈ°
ax.set_facecolor('#F8F9FA')
return fig
# Function to create contribution distribution pie chart
def create_contribution_pie(model_commits, dataset_commits, space_commits):
labels = ['Models', 'Datasets', 'Spaces']
sizes = [model_commits, dataset_commits, space_commits]
# Filter out zero values
filtered_labels = [label for label, size in zip(labels, sizes) if size > 0]
filtered_sizes = [size for size in sizes if size > 0]
if not filtered_sizes:
return None # No data to show
# Use a more attractive color scheme
colors = ['#FF9800', '#2196F3', '#4CAF50']
filtered_colors = [color for color, size in zip(colors, sizes) if size > 0]
fig, ax = plt.subplots(figsize=(7, 7), facecolor='#F8F9FA')
# Create exploded pie chart with improved styling
explode = [0.1] * len(filtered_sizes) # Explode all slices for better visualization
wedges, texts, autotexts = ax.pie(
filtered_sizes,
labels=None, # We'll add custom labels
colors=filtered_colors,
autopct='%1.1f%%',
startangle=90,
shadow=True,
explode=explode,
textprops={'fontsize': 14, 'weight': 'bold'},
wedgeprops={'edgecolor': 'white', 'linewidth': 2}
)
# Customize the percentage text
for autotext in autotexts:
autotext.set_color('white')
autotext.set_fontsize(12)
autotext.set_weight('bold')
# Add legend with custom styling
ax.legend(
wedges,
[f"{label} ({size})" for label, size in zip(filtered_labels, filtered_sizes)],
title="Contribution Types",
loc="center left",
bbox_to_anchor=(0.85, 0.5),
fontsize=12
)
ax.set_title('Distribution of Contributions by Type', fontsize=16, pad=20, fontweight='bold')
ax.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle
return fig
# Function to create monthly activity chart
def create_monthly_activity(df, year):
if df.empty:
return None
# Aggregate by month
df['date'] = pd.to_datetime(df['date'])
df['month'] = df['date'].dt.month
df['month_name'] = df['date'].dt.strftime('%b')
# Count by month and ensure all months are present
month_order = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
counts_by_month = df.groupby('month_name')['date'].count()
monthly_counts = pd.Series([counts_by_month.get(m, 0) for m in month_order], index=month_order)
# Create bar chart with improved styling
fig, ax = plt.subplots(figsize=(14, 6), facecolor='#F8F9FA')
# Create bars with gradient colors based on activity level
norm = plt.Normalize(0, monthly_counts.max() if monthly_counts.max() > 0 else 1)
colors = plt.cm.viridis(norm(monthly_counts.values))
bars = ax.bar(monthly_counts.index, monthly_counts.values, color=colors, width=0.7)
# Highlight the month with most activity
if monthly_counts.max() > 0:
max_idx = monthly_counts.argmax()
bars[max_idx].set_color('#FF5722')
bars[max_idx].set_edgecolor('black')
bars[max_idx].set_linewidth(1.5)
# Add labels and styling with enhanced design
ax.set_title(f'Monthly Activity in {year}', fontsize=18, pad=20, fontweight='bold')
ax.set_xlabel('Month', fontsize=14, labelpad=10)
ax.set_ylabel('Number of Contributions', fontsize=14, labelpad=10)
# Add value labels on top of bars with improved styling
for i, count in enumerate(monthly_counts.values):
if count > 0:
ax.text(i, count + 0.5, str(int(count)), ha='center', fontsize=12, fontweight='bold')
# Add grid for better readability with improved styling
ax.grid(axis='y', linestyle='--', alpha=0.7, color='#CCCCCC')
ax.set_axisbelow(True) # Grid lines behind bars
# Style the chart borders and background
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_linewidth(0.5)
ax.spines['bottom'].set_linewidth(0.5)
# Adjust tick parameters for better look
ax.tick_params(axis='x', labelsize=12, pad=5)
ax.tick_params(axis='y', labelsize=12, pad=5)
plt.tight_layout()
return fig
# Function to render follower growth simulation
def simulate_follower_data(username, spaces_count, models_count, total_commits):
# Simulate follower growth based on contribution metrics
# This is just a simulation for visual purposes
import numpy as np
from datetime import timedelta
# Start with a base number of followers proportional to contribution metrics
base_followers = max(10, int((spaces_count * 2 + models_count * 3 + total_commits/10) / 6))
# Generate timestamps for the past year
end_date = datetime.now()
start_date = end_date - timedelta(days=365)
dates = pd.date_range(start=start_date, end=end_date, freq='W') # Weekly data points
# Generate follower growth with some randomness
followers = []
current = base_followers / 2 # Start from half the base
for i in range(len(dates)):
growth_factor = 1 + (np.random.random() * 0.1) # Random growth between 0% and 10%
current = current * growth_factor
followers.append(int(current))
# Ensure end value matches our base_followers estimate
followers[-1] = base_followers
# Create the chart with improved styling
fig, ax = plt.subplots(figsize=(14, 6), facecolor='#F8F9FA')
# Create gradient line for better visualization
points = np.array([dates, followers]).T.reshape(-1, 1, 2)
segments = np.concatenate([points[:-1], points[1:]], axis=1)
from matplotlib.collections import LineCollection
norm = plt.Normalize(0, len(segments))
lc = LineCollection(segments, cmap='viridis', norm=norm, linewidth=3, alpha=0.8)
lc.set_array(np.arange(len(segments)))
line = ax.add_collection(lc)
# Add markers
ax.scatter(dates, followers, s=50, color='#9C27B0', alpha=0.8, zorder=10)
# Add styling with enhanced design
ax.set_title(f"Estimated Follower Growth for {username}", fontsize=18, pad=20, fontweight='bold')
ax.set_xlabel("Date", fontsize=14, labelpad=10)
ax.set_ylabel("Followers", fontsize=14, labelpad=10)
# Format the axes limits
ax.set_xlim(dates.min(), dates.max())
ax.set_ylim(0, max(followers) * 1.1)
# Add grid for better readability with improved styling
ax.grid(True, linestyle='--', alpha=0.7, color='#CCCCCC')
ax.set_axisbelow(True) # Grid lines behind plot
# Style the chart borders and background
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_linewidth(0.5)
ax.spines['bottom'].set_linewidth(0.5)
# Adjust tick parameters for better look
ax.tick_params(axis='x', labelsize=12, rotation=45)
ax.tick_params(axis='y', labelsize=12)
# Add annotations for start and end points
ax.annotate(f"Start: {followers[0]}",
xy=(dates[0], followers[0]),
xytext=(10, 10),
textcoords='offset points',
fontsize=12,
fontweight='bold',
color='#9C27B0',
bbox=dict(boxstyle="round,pad=0.3", fc="#F3E5F5", ec="#9C27B0", alpha=0.8))
ax.annotate(f"Current: {followers[-1]}",
xy=(dates[-1], followers[-1]),
xytext=(-10, 10),
textcoords='offset points',
fontsize=12,
fontweight='bold',
color='#9C27B0',
ha='right',
bbox=dict(boxstyle="round,pad=0.3", fc="#F3E5F5", ec="#9C27B0", alpha=0.8))
plt.tight_layout()
return fig
# Function to create ranking position visualization
def create_ranking_chart(username, overall_rank, spaces_rank, models_rank):
if not (overall_rank or spaces_rank or models_rank):
return None
# Create a horizontal bar chart for rankings with improved styling
fig, ax = plt.subplots(figsize=(12, 5), facecolor='#F8F9FA')
categories = []
positions = []
colors = []
rank_values = []
if overall_rank:
categories.append('Overall')
positions.append(101 - overall_rank) # Invert rank for visualization (higher is better)
colors.append('#673AB7')
rank_values.append(overall_rank)
if spaces_rank:
categories.append('Spaces')
positions.append(101 - spaces_rank)
colors.append('#2196F3')
rank_values.append(spaces_rank)
if models_rank:
categories.append('Models')
positions.append(101 - models_rank)
colors.append('#FF9800')
rank_values.append(models_rank)
# Create horizontal bars with enhanced styling
bars = ax.barh(categories, positions, color=colors, alpha=0.8, height=0.6,
edgecolor='white', linewidth=1.5)
# Add rank values as text with improved styling
for i, bar in enumerate(bars):
ax.text(bar.get_width() + 2, bar.get_y() + bar.get_height()/2,
f'Rank #{rank_values[i]}', va='center', fontsize=12,
fontweight='bold', color=colors[i])
# Set chart properties with enhanced styling
ax.set_xlim(0, 105)
ax.set_title(f"Ranking Positions for {username} (Top 100)", fontsize=18, pad=20, fontweight='bold')
ax.set_xlabel("Percentile (higher is better)", fontsize=14, labelpad=10)
# Add explanatory text
ax.text(50, -0.6, "← Lower rank (higher number) | Higher rank (lower number) β†’",
ha='center', va='center', fontsize=10, fontweight='bold', color='#666666')
# Add a vertical line at 90th percentile to highlight top 10 with improved styling
ax.axvline(x=90, color='#FF5252', linestyle='--', alpha=0.7, linewidth=2)
ax.text(92, len(categories)/2, 'Top 10', color='#D32F2F', fontsize=12,
rotation=90, va='center', fontweight='bold')
# Style the chart borders and background
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_linewidth(0.5)
ax.spines['bottom'].set_linewidth(0.5)
# Adjust tick parameters for better look
ax.tick_params(axis='x', labelsize=12)
ax.tick_params(axis='y', labelsize=14, pad=5)
# Add grid for better readability
ax.grid(axis='x', linestyle='--', alpha=0.5, color='#CCCCCC')
ax.set_axisbelow(True) # Grid lines behind bars
# Invert x-axis to show ranking position more intuitively
ax.invert_xaxis()
plt.tight_layout()
return fig
# Fetch trending accounts with a loading spinner (do this once at the beginning)
with st.spinner("Loading trending accounts..."):
trending_accounts, top_owners_spaces, top_owners_models = get_trending_accounts(limit=100)
# Sidebar
with st.sidebar:
st.markdown('<h1 style="text-align: center; color: #1E88E5;">πŸ‘€ Contributor</h1>', unsafe_allow_html=True)
# Create tabs for Spaces and Models rankings - ONLY SHOWING FIRST TWO TABS
tab1, tab2 = st.tabs([
"Top 100 Overall",
"Top Spaces & Models"
])
with tab1:
# Show combined trending accounts list
st.markdown('<div class="subheader"><h3>πŸ”₯ Top 100 Contributors</h3></div>', unsafe_allow_html=True)
# Create a data frame for the table
if trending_accounts:
# Create a mapping from username to Spaces and Models rankings
spaces_rank = {owner: idx+1 for idx, (owner, _) in enumerate(top_owners_spaces)}
models_rank = {owner: idx+1 for idx, (owner, _) in enumerate(top_owners_models)}
# Create the overall ranking dataframe with trophies for top 3
overall_data = []
for idx, username in enumerate(trending_accounts[:100]):
# Add trophy emojis for top 3
rank_display = ""
if idx == 0:
rank_display = "πŸ† " # Gold trophy for 1st place
elif idx == 1:
rank_display = "πŸ† " # Silver trophy for 2nd place
elif idx == 2:
rank_display = "πŸ† " # Bronze trophy for 3rd place
# Use strings for all rankings to avoid type conversion issues
spaces_position = str(spaces_rank.get(username, "-"))
models_position = str(models_rank.get(username, "-"))
overall_data.append([f"{rank_display}{username}", spaces_position, models_position])
ranking_data_overall = pd.DataFrame(
overall_data,
columns=["Contributor", "Spaces Rank", "Models Rank"]
)
ranking_data_overall.index = ranking_data_overall.index + 1 # Start index from 1 for ranking
st.dataframe(
ranking_data_overall,
height=900, # μ•½ 30ν–‰ 정도 보이도둝 ν”½μ…€ λ‹¨μœ„ 높이 μ„€μ • (ν•„μš”μ— 따라 μ‘°μ • κ°€λŠ₯)
column_config={
"Contributor": st.column_config.TextColumn("Contributor"),
"Spaces Rank": st.column_config.TextColumn("Spaces Rank"),
"Models Rank": st.column_config.TextColumn("Models Rank")
},
use_container_width=True,
hide_index=False
)
with tab2:
# Show trending accounts by Spaces & Models
st.markdown('<div class="subheader"><h3>πŸš€ Spaces Leaders</h3></div>', unsafe_allow_html=True)
# Create a data frame for the Spaces table with medals for top 3
if top_owners_spaces:
spaces_data = []
for idx, (owner, count) in enumerate(top_owners_spaces[:50]):
# Add medal emojis for top 3
rank_display = ""
if idx == 0:
rank_display = "πŸ₯‡ " # Gold medal for 1st place
elif idx == 1:
rank_display = "πŸ₯ˆ " # Silver medal for 2nd place
elif idx == 2:
rank_display = "πŸ₯‰ " # Bronze medal for 3rd place
spaces_data.append([f"{rank_display}{owner}", count])
ranking_data_spaces = pd.DataFrame(spaces_data, columns=["Contributor", "Spaces Count(Top 500 positions)"])
ranking_data_spaces.index = ranking_data_spaces.index + 1 # Start index from 1 for ranking
st.dataframe(
ranking_data_spaces,
column_config={
"Contributor": st.column_config.TextColumn("Contributor"),
"Spaces Count": st.column_config.NumberColumn("Spaces Count", format="%d")
},
use_container_width=True,
hide_index=False
)
# Display the top Models accounts list with medals for top 3
st.markdown('<div class="subheader"><h3>🧠 Models Leaders</h3></div>', unsafe_allow_html=True)
# Create a data frame for the Models table with medals for top 3
if top_owners_models:
models_data = []
for idx, (owner, count) in enumerate(top_owners_models[:50]):
# Add medal emojis for top 3
rank_display = ""
if idx == 0:
rank_display = "πŸ₯‡ " # Gold medal for 1st place
elif idx == 1:
rank_display = "πŸ₯ˆ " # Silver medal for 2nd place
elif idx == 2:
rank_display = "πŸ₯‰ " # Bronze medal for 3rd place
models_data.append([f"{rank_display}{owner}", count])
ranking_data_models = pd.DataFrame(models_data, columns=["Contributor", "Models Count(Top 500 positions)"])
ranking_data_models.index = ranking_data_models.index + 1 # Start index from 1 for ranking
st.dataframe(
ranking_data_models,
column_config={
"Contributor": st.column_config.TextColumn("Contributor"),
"Models Count": st.column_config.NumberColumn("Models Count", format="%d")
},
use_container_width=True,
hide_index=False
)
# Add visual divider
st.markdown('<hr style="margin: 2rem 0; border-color: #e0e0e0;">', unsafe_allow_html=True)
# Display contributor selection with enhanced styling
st.markdown('<div class="subheader"><h3>Select Contributor</h3></div>', unsafe_allow_html=True)
selected_trending = st.selectbox(
"Choose from trending accounts",
options=trending_accounts[:100], # Limit to top 100
index=0 if trending_accounts else None,
key="trending_selectbox"
)
# Custom account input option with enhanced styling
st.markdown('<div style="text-align: center; margin: 15px 0; font-weight: bold;">- OR -</div>', unsafe_allow_html=True)
custom = st.text_input("Enter a username/organization:", placeholder="e.g. facebook, google...")
# Add visual divider
st.markdown('<hr style="margin: 1.5rem 0; border-color: #e0e0e0;">', unsafe_allow_html=True)
# Set username based on selection or custom input
if custom.strip():
username = custom.strip()
elif selected_trending:
username = selected_trending
else:
username = "facebook" # Default fallback
# Year selection with enhanced styling
st.markdown('<div class="subheader"><h3>πŸ—“οΈ Time Period</h3></div>', unsafe_allow_html=True)
year_options = list(range(datetime.now().year, 2017, -1))
selected_year = st.selectbox("Select Year:", options=year_options)
# Additional options for customization with enhanced styling
st.markdown('<div class="subheader"><h3>βš™οΈ Display Options</h3></div>', unsafe_allow_html=True)
show_models = st.checkbox("Show Models", value=True)
show_datasets = st.checkbox("Show Datasets", value=True)
show_spaces = st.checkbox("Show Spaces", value=True)
# Main Content
st.markdown(f'<h1 style="text-align: center; color: #1E88E5; margin-bottom: 2rem;">πŸ€— Hugging Face Contributions</h1>', unsafe_allow_html=True)
if username:
# Create a header card with contributor info
header_col1, header_col2 = st.columns([1, 2])
with header_col1:
st.markdown(f'<div style="background-color: #E3F2FD; padding: 20px; border-radius: 10px; border-left: 5px solid #1E88E5;">'
f'<h2 style="color: #1E88E5;">πŸ‘€ {username}</h2>'
f'<p style="font-size: 16px;">Analyzing contributions for {selected_year}</p>'
f'<p><a href="https://huggingface.co/{username}" target="_blank" style="color: #1E88E5; font-weight: bold;">View Profile</a></p>'
f'</div>', unsafe_allow_html=True)
with header_col2:
# Add explanation about the app
st.markdown(f'<div style="background-color: #F3E5F5; padding: 20px; border-radius: 10px; border-left: 5px solid #9C27B0;">'
f'<h3 style="color: #9C27B0;">About This Analysis</h3>'
f'<p>This dashboard analyzes {username}\'s contributions to Hugging Face in {selected_year}, including models, datasets, and spaces.</p>'
f'<p style="font-style: italic; font-size: 12px;">* Some metrics like follower growth are simulated for visualization purposes.</p>'
f'</div>', unsafe_allow_html=True)
with st.spinner(f"Fetching contribution data for {username}..."):
# Initialize variables for tracking
overall_rank = None
spaces_rank = None
models_rank = None
spaces_count = 0
models_count = 0
datasets_count = 0
# Display contributor rank if in top 100
if username in trending_accounts[:100]:
overall_rank = trending_accounts.index(username) + 1
# Create a prominent ranking display
st.markdown(f'<div style="background-color: #FFF8E1; padding: 20px; border-radius: 10px; border-left: 5px solid #FFC107; margin: 1rem 0;">'
f'<h2 style="color: #FFA000; text-align: center;">πŸ† Ranked #{overall_rank} in Top Contributors</h2>'
f'</div>', unsafe_allow_html=True)
# Find user in spaces ranking
for i, (owner, count) in enumerate(top_owners_spaces):
if owner == username:
spaces_rank = i+1
spaces_count = count
break
# Find user in models ranking
for i, (owner, count) in enumerate(top_owners_models):
if owner == username:
models_rank = i+1
models_count = count
break
# Display ranking visualization
rank_chart = create_ranking_chart(username, overall_rank, spaces_rank, models_rank)
if rank_chart:
st.pyplot(rank_chart)
# Create a dictionary to store commits by type
commits_by_type = {}
commit_counts_by_type = {}
# Determine which types to fetch based on checkboxes
types_to_fetch = []
if show_models:
types_to_fetch.append("model")
if show_datasets:
types_to_fetch.append("dataset")
if show_spaces:
types_to_fetch.append("space")
if not types_to_fetch:
st.warning("Please select at least one content type to display (Models, Datasets, or Spaces)")
st.stop()
# Create a progress container
progress_container = st.container()
progress_container.markdown('<h3 style="color: #1E88E5;">Fetching Repository Data...</h3>', unsafe_allow_html=True)
progress_bar = progress_container.progress(0)
# Fetch commits for each selected type
for type_index, kind in enumerate(types_to_fetch):
try:
items = cached_list_items(username, kind)
# Update counts for radar chart
if kind == "model":
models_count = len(items)
elif kind == "dataset":
datasets_count = len(items)
elif kind == "space":
spaces_count = len(items)
repo_ids = [item.id for item in items]
progress_container.info(f"Found {len(repo_ids)} {kind}s for {username}")
# Process repos in chunks
chunk_size = 5
total_commits = 0
all_commit_dates = []
for i in range(0, len(repo_ids), chunk_size):
chunk = repo_ids[i:i + chunk_size]
with ThreadPoolExecutor(max_workers=min(5, len(chunk))) as executor:
future_to_repo = {
executor.submit(fetch_commits_for_repo, repo_id, kind, username, selected_year): repo_id
for repo_id in chunk
}
for future in as_completed(future_to_repo):
repo_commits, repo_count = future.result()
if repo_commits:
all_commit_dates.extend(repo_commits)
total_commits += repo_count
# Update progress for all types
progress_per_type = 1.0 / len(types_to_fetch)
current_type_progress = min(1.0, (i + len(chunk)) / max(1, len(repo_ids)))
overall_progress = (type_index * progress_per_type) + (current_type_progress * progress_per_type)
progress_bar.progress(overall_progress)
commits_by_type[kind] = all_commit_dates
commit_counts_by_type[kind] = total_commits
except Exception as e:
st.warning(f"Error fetching {kind}s for {username}: {str(e)}")
commits_by_type[kind] = []
commit_counts_by_type[kind] = 0
# Complete progress
progress_bar.progress(1.0)
progress_container.success("Data fetching complete!")
time.sleep(0.5) # Short pause for visual feedback
progress_container.empty() # Clear the progress indicators
# Calculate total commits across all types
total_commits = sum(commit_counts_by_type.values())
# Main dashboard layout with improved structure
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">Activity Overview</h2>', unsafe_allow_html=True)
# Profile summary
profile_col1, profile_col2 = st.columns([1, 2])
with profile_col1:
# Create a stats card with key metrics
st.markdown(f'<div style="background-color: white; padding: 20px; border-radius: 10px; box-shadow: 0 2px 10px rgba(0,0,0,0.1);">'
f'<h3 style="color: #1E88E5; text-align: center; margin-bottom: 15px;">Contribution Stats</h3>'
f'<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">'
f'<span style="font-weight: bold;">Total Commits:</span><span>{total_commits}</span></div>'
f'<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">'
f'<span style="font-weight: bold;">Models:</span><span>{models_count}</span></div>'
f'<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">'
f'<span style="font-weight: bold;">Datasets:</span><span>{datasets_count}</span></div>'
f'<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">'
f'<span style="font-weight: bold;">Spaces:</span><span>{spaces_count}</span></div>'
f'</div>', unsafe_allow_html=True)
# Type breakdown pie chart
model_commits = commit_counts_by_type.get("model", 0)
dataset_commits = commit_counts_by_type.get("dataset", 0)
space_commits = commit_counts_by_type.get("space", 0)
pie_chart = create_contribution_pie(model_commits, dataset_commits, space_commits)
if pie_chart:
st.pyplot(pie_chart)
with profile_col2:
# Display contribution radar chart
radar_fig = create_contribution_radar(username, models_count, spaces_count, datasets_count, total_commits)
st.pyplot(radar_fig)
# Create DataFrame for all commits
all_commits = []
for commits in commits_by_type.values():
all_commits.extend(commits)
all_df = pd.DataFrame(all_commits, columns=["date"])
if not all_df.empty:
all_df = all_df.drop_duplicates() # Remove any duplicate dates
# Calendar heatmap for all commits in a separate section
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">Contribution Calendar</h2>', unsafe_allow_html=True)
if not all_df.empty:
make_calendar_heatmap(all_df, "All Contributions", selected_year)
else:
st.info(f"No contributions found for {username} in {selected_year}")
# Monthly activity chart
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">Monthly Activity</h2>', unsafe_allow_html=True)
monthly_fig = create_monthly_activity(all_df, selected_year)
if monthly_fig:
st.pyplot(monthly_fig)
else:
st.info(f"No activity data available for {username} in {selected_year}")
# Follower growth simulation
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">Growth Projection</h2>', unsafe_allow_html=True)
st.markdown('<div style="background-color: #EDE7F6; padding: 10px; border-radius: 5px; margin-bottom: 15px;">'
'<p style="font-style: italic; margin: 0;">πŸ“Š This is a simulation based on contribution metrics - for visualization purposes only</p>'
'</div>', unsafe_allow_html=True)
follower_chart = simulate_follower_data(username, spaces_count, models_count, total_commits)
st.pyplot(follower_chart)
# Analytics summary section
if total_commits > 0:
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">πŸ“Š Analytics Summary</h2>', unsafe_allow_html=True)
# Contribution pattern analysis
monthly_df = pd.DataFrame(all_commits, columns=["date"])
monthly_df['date'] = pd.to_datetime(monthly_df['date'])
monthly_df['month'] = monthly_df['date'].dt.month
if not monthly_df.empty:
most_active_month = monthly_df['month'].value_counts().idxmax()
month_name = datetime(2020, most_active_month, 1).strftime('%B')
# Create a summary card
st.markdown(f'<div style="background-color: white; padding: 25px; border-radius: 10px; box-shadow: 0 2px 10px rgba(0,0,0,0.1);">'
f'<h3 style="color: #1E88E5; border-bottom: 1px solid #E0E0E0; padding-bottom: 10px;">Activity Analysis for {username}</h3>'
f'<ul style="list-style-type: none; padding-left: 5px;">'
f'<li style="margin: 15px 0; font-size: 16px;">πŸ“ˆ <strong>Total Activity:</strong> {total_commits} contributions in {selected_year}</li>'
f'<li style="margin: 15px 0; font-size: 16px;">πŸ—“οΈ <strong>Most Active Month:</strong> {month_name} with {monthly_df["month"].value_counts().max()} contributions</li>'
f'<li style="margin: 15px 0; font-size: 16px;">🧩 <strong>Repository Breakdown:</strong> {models_count} Models, {spaces_count} Spaces, {datasets_count} Datasets</li>'
f'</ul>', unsafe_allow_html=True)
# Add ranking context if available
if overall_rank:
percentile = 100 - overall_rank
st.markdown(f'<div style="margin-top: 20px;">'
f'<h3 style="color: #1E88E5; border-bottom: 1px solid #E0E0E0; padding-bottom: 10px;">Ranking Analysis</h3>'
f'<ul style="list-style-type: none; padding-left: 5px;">'
f'<li style="margin: 15px 0; font-size: 16px;">πŸ† <strong>Overall Ranking:</strong> #{overall_rank} (Top {percentile}% of contributors)</li>', unsafe_allow_html=True)
badge_html = '<div style="margin: 20px 0;">'
if spaces_rank and spaces_rank <= 10:
badge_html += f'<span style="background-color: #FFECB3; color: #FF6F00; padding: 8px 15px; border-radius: 20px; font-weight: bold; margin-right: 10px; display: inline-block; margin-bottom: 10px;">🌟 Elite Spaces Contributor (#{spaces_rank})</span>'
elif spaces_rank and spaces_rank <= 30:
badge_html += f'<span style="background-color: #E1F5FE; color: #0277BD; padding: 8px 15px; border-radius: 20px; font-weight: bold; margin-right: 10px; display: inline-block; margin-bottom: 10px;">✨ Outstanding Spaces Contributor (#{spaces_rank})</span>'
if models_rank and models_rank <= 10:
badge_html += f'<span style="background-color: #FFECB3; color: #FF6F00; padding: 8px 15px; border-radius: 20px; font-weight: bold; margin-right: 10px; display: inline-block; margin-bottom: 10px;">🌟 Elite Models Contributor (#{models_rank})</span>'
elif models_rank and models_rank <= 30:
badge_html += f'<span style="background-color: #E1F5FE; color: #0277BD; padding: 8px 15px; border-radius: 20px; font-weight: bold; margin-right: 10px; display: inline-block; margin-bottom: 10px;">✨ Outstanding Models Contributor (#{models_rank})</span>'
badge_html += '</div>'
# Add achievement badges
if spaces_rank or models_rank:
st.markdown(badge_html, unsafe_allow_html=True)
st.markdown('</ul></div></div>', unsafe_allow_html=True)
# Detailed category analysis section
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">Detailed Category Analysis</h2>', unsafe_allow_html=True)
# Create category cards in columns
cols = st.columns(len(types_to_fetch)) if types_to_fetch else st.columns(1)
category_icons = {
"model": "🧠",
"dataset": "πŸ“¦",
"space": "πŸš€"
}
category_colors = {
"model": "#FF9800",
"dataset": "#2196F3",
"space": "#4CAF50"
}
for i, kind in enumerate(types_to_fetch):
with cols[i]:
try:
emoji = category_icons.get(kind, "πŸ“Š")
label = kind.capitalize() + "s"
color = category_colors.get(kind, "#1E88E5")
total = len(cached_list_items(username, kind))
commits = commits_by_type.get(kind, [])
commit_count = commit_counts_by_type.get(kind, 0)
# Create styled card header
st.markdown(f'<div style="background-color: white; padding: 20px; border-radius: 10px; box-shadow: 0 2px 10px rgba(0,0,0,0.1); border-top: 5px solid {color};">'
f'<h3 style="color: {color}; text-align: center;">{emoji} {label}</h3>'
f'<div style="display: flex; justify-content: space-between; margin: 15px 0;">'
f'<span style="font-weight: bold;">Total:</span><span>{total}</span></div>'
f'<div style="display: flex; justify-content: space-between; margin-bottom: 15px;">'
f'<span style="font-weight: bold;">Commits:</span><span>{commit_count}</span></div>'
f'</div>', unsafe_allow_html=True)
# Create calendar for this type
df_kind = pd.DataFrame(commits, columns=["date"])
if not df_kind.empty:
df_kind = df_kind.drop_duplicates() # Remove any duplicate dates
make_calendar_heatmap(df_kind, f"{label} Commits", selected_year)
else:
st.info(f"No {label.lower()} activity in {selected_year}")
except Exception as e:
st.warning(f"Error processing {kind.capitalize()}s: {str(e)}")
# Show empty placeholder
st.markdown(f'<div style="background-color: white; padding: 20px; border-radius: 10px; box-shadow: 0 2px 10px rgba(0,0,0,0.1); border-top: 5px solid #9E9E9E; text-align: center;">'
f'<h3 style="color: #9E9E9E;">⚠️ Error</h3>'
f'<p>Could not load {kind.capitalize()}s data</p>'
f'</div>', unsafe_allow_html=True)
# Footer
st.markdown('<hr style="margin: 3rem 0 1rem 0;">', unsafe_allow_html=True)
st.markdown('<p style="text-align: center; color: #9E9E9E; font-size: 0.8rem;">Hugging Face Contributions Dashboard | Data fetched from Hugging Face API</p>', unsafe_allow_html=True)
else:
# If no username is selected, show welcome screen
st.markdown(f'<div style="text-align: center; margin: 50px 0;">'
f'<img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="width: 200px; margin-bottom: 30px;">'
f'<h2>Welcome to Hugging Face Contributions Dashboard</h2>'
f'<p style="font-size: 1.2rem;">Please select a contributor from the sidebar to view their activity.</p>'
f'</div>', unsafe_allow_html=True)