Create app-backup.py
Browse files- app-backup.py +1179 -0
app-backup.py
ADDED
@@ -0,0 +1,1179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from huggingface_hub import HfApi
|
3 |
+
import pandas as pd
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import seaborn as sns
|
6 |
+
from datetime import datetime
|
7 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
8 |
+
from functools import lru_cache
|
9 |
+
import time
|
10 |
+
import requests
|
11 |
+
from collections import Counter
|
12 |
+
import numpy as np
|
13 |
+
|
14 |
+
st.set_page_config(page_title="HF Contributions", layout="wide", initial_sidebar_state="expanded")
|
15 |
+
|
16 |
+
# ν₯μλ UI μ€νμΌλ§
|
17 |
+
st.markdown("""
|
18 |
+
<style>
|
19 |
+
/* μ¬μ΄λλ° μ€νμΌλ§ */
|
20 |
+
[data-testid="stSidebar"] {
|
21 |
+
min-width: 35vw !important;
|
22 |
+
max-width: 35vw !important;
|
23 |
+
background-color: #f8f9fa;
|
24 |
+
padding: 1rem;
|
25 |
+
border-right: 1px solid #e9ecef;
|
26 |
+
}
|
27 |
+
|
28 |
+
/* ν€λ μ€νμΌλ§ */
|
29 |
+
h1, h2, h3 {
|
30 |
+
color: #1e88e5;
|
31 |
+
font-weight: 700;
|
32 |
+
}
|
33 |
+
h1 {
|
34 |
+
font-size: 2.5rem;
|
35 |
+
margin-bottom: 1.5rem;
|
36 |
+
border-bottom: 2px solid #e0e0e0;
|
37 |
+
padding-bottom: 0.5rem;
|
38 |
+
}
|
39 |
+
h2 {
|
40 |
+
font-size: 1.8rem;
|
41 |
+
margin-top: 1.5rem;
|
42 |
+
}
|
43 |
+
h3 {
|
44 |
+
font-size: 1.4rem;
|
45 |
+
margin-top: 1rem;
|
46 |
+
}
|
47 |
+
|
48 |
+
/* μΉ΄λ μ€νμΌλ§ */
|
49 |
+
div[data-testid="stMetric"] {
|
50 |
+
background-color: #f1f8fe;
|
51 |
+
border-radius: 10px;
|
52 |
+
padding: 1rem;
|
53 |
+
box-shadow: 0 2px 5px rgba(0,0,0,0.05);
|
54 |
+
margin-bottom: 1rem;
|
55 |
+
}
|
56 |
+
|
57 |
+
/* μ°¨νΈ μ»¨ν
μ΄λ μ€νμΌλ§ */
|
58 |
+
.chart-container {
|
59 |
+
background-color: white;
|
60 |
+
border-radius: 10px;
|
61 |
+
padding: 1rem;
|
62 |
+
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
|
63 |
+
margin: 1rem 0;
|
64 |
+
}
|
65 |
+
|
66 |
+
/* ν
μ΄λΈ μ€νμΌλ§ */
|
67 |
+
div[data-testid="stDataFrame"] {
|
68 |
+
background-color: white;
|
69 |
+
border-radius: 10px;
|
70 |
+
padding: 0.5rem;
|
71 |
+
box-shadow: 0 2px 5px rgba(0,0,0,0.05);
|
72 |
+
}
|
73 |
+
|
74 |
+
/* ν μ€νμΌλ§ */
|
75 |
+
button[data-baseweb="tab"] {
|
76 |
+
font-weight: 600;
|
77 |
+
}
|
78 |
+
|
79 |
+
/* μλΈν€λ λ°°κ²½ */
|
80 |
+
.subheader {
|
81 |
+
background-color: #f1f8fe;
|
82 |
+
padding: 0.5rem 1rem;
|
83 |
+
border-radius: 5px;
|
84 |
+
margin-bottom: 1rem;
|
85 |
+
}
|
86 |
+
|
87 |
+
/* μ 보 λ±μ§ */
|
88 |
+
.info-badge {
|
89 |
+
background-color: #e3f2fd;
|
90 |
+
color: #1976d2;
|
91 |
+
padding: 0.3rem 0.7rem;
|
92 |
+
border-radius: 20px;
|
93 |
+
display: inline-block;
|
94 |
+
font-weight: 500;
|
95 |
+
margin-right: 0.5rem;
|
96 |
+
}
|
97 |
+
|
98 |
+
/* νλ‘κ·Έλ μ€ λ° */
|
99 |
+
div[data-testid="stProgress"] {
|
100 |
+
height: 0.5rem !important;
|
101 |
+
}
|
102 |
+
|
103 |
+
/* λ²νΌ μ€νμΌλ§ */
|
104 |
+
.stButton button {
|
105 |
+
background-color: #1e88e5;
|
106 |
+
color: white;
|
107 |
+
border: none;
|
108 |
+
font-weight: 500;
|
109 |
+
}
|
110 |
+
|
111 |
+
/* κ²½κ³ /μ±κ³΅ λ©μμ§ κ°μ */
|
112 |
+
div[data-testid="stAlert"] {
|
113 |
+
border-radius: 10px;
|
114 |
+
margin: 1rem 0;
|
115 |
+
}
|
116 |
+
|
117 |
+
/* μΉ΄ν
κ³ λ¦¬ λΆμ μΉμ
*/
|
118 |
+
.category-section {
|
119 |
+
background-color: white;
|
120 |
+
border-radius: 10px;
|
121 |
+
padding: 1rem;
|
122 |
+
margin-bottom: 1.5rem;
|
123 |
+
box-shadow: 0 2px 5px rgba(0,0,0,0.05);
|
124 |
+
}
|
125 |
+
</style>
|
126 |
+
""", unsafe_allow_html=True)
|
127 |
+
|
128 |
+
api = HfApi()
|
129 |
+
|
130 |
+
# Cache for API responses
|
131 |
+
@lru_cache(maxsize=1000)
|
132 |
+
def cached_repo_info(repo_id, repo_type):
|
133 |
+
return api.repo_info(repo_id=repo_id, repo_type=repo_type)
|
134 |
+
|
135 |
+
@lru_cache(maxsize=1000)
|
136 |
+
def cached_list_commits(repo_id, repo_type):
|
137 |
+
return list(api.list_repo_commits(repo_id=repo_id, repo_type=repo_type))
|
138 |
+
|
139 |
+
@lru_cache(maxsize=100)
|
140 |
+
def cached_list_items(username, kind):
|
141 |
+
if kind == "model":
|
142 |
+
return list(api.list_models(author=username))
|
143 |
+
elif kind == "dataset":
|
144 |
+
return list(api.list_datasets(author=username))
|
145 |
+
elif kind == "space":
|
146 |
+
return list(api.list_spaces(author=username))
|
147 |
+
return []
|
148 |
+
|
149 |
+
# Function to fetch trending accounts and create stats
|
150 |
+
@lru_cache(maxsize=1)
|
151 |
+
def get_trending_accounts(limit=100):
|
152 |
+
try:
|
153 |
+
trending_data = {"spaces": [], "models": []}
|
154 |
+
|
155 |
+
# Get spaces for stats calculation
|
156 |
+
spaces_response = requests.get("https://huggingface.co/api/spaces",
|
157 |
+
params={"limit": 10000},
|
158 |
+
timeout=30)
|
159 |
+
|
160 |
+
# Get models for stats calculation
|
161 |
+
models_response = requests.get("https://huggingface.co/api/models",
|
162 |
+
params={"limit": 10000},
|
163 |
+
timeout=30)
|
164 |
+
|
165 |
+
# Process spaces data
|
166 |
+
spaces_owners = []
|
167 |
+
if spaces_response.status_code == 200:
|
168 |
+
spaces = spaces_response.json()
|
169 |
+
|
170 |
+
# Count spaces by owner
|
171 |
+
owner_counts_spaces = {}
|
172 |
+
for space in spaces:
|
173 |
+
if '/' in space.get('id', ''):
|
174 |
+
owner, _ = space.get('id', '').split('/', 1)
|
175 |
+
else:
|
176 |
+
owner = space.get('owner', '')
|
177 |
+
|
178 |
+
if owner != 'None':
|
179 |
+
owner_counts_spaces[owner] = owner_counts_spaces.get(owner, 0) + 1
|
180 |
+
|
181 |
+
# Get top owners by count for spaces
|
182 |
+
top_owners_spaces = sorted(owner_counts_spaces.items(), key=lambda x: x[1], reverse=True)[:limit]
|
183 |
+
trending_data["spaces"] = top_owners_spaces
|
184 |
+
spaces_owners = [owner for owner, _ in top_owners_spaces]
|
185 |
+
|
186 |
+
# Process models data
|
187 |
+
models_owners = []
|
188 |
+
if models_response.status_code == 200:
|
189 |
+
models = models_response.json()
|
190 |
+
|
191 |
+
# Count models by owner
|
192 |
+
owner_counts_models = {}
|
193 |
+
for model in models:
|
194 |
+
if '/' in model.get('id', ''):
|
195 |
+
owner, _ = model.get('id', '').split('/', 1)
|
196 |
+
else:
|
197 |
+
owner = model.get('owner', '')
|
198 |
+
|
199 |
+
if owner != 'None':
|
200 |
+
owner_counts_models[owner] = owner_counts_models.get(owner, 0) + 1
|
201 |
+
|
202 |
+
# Get top owners by count for models
|
203 |
+
top_owners_models = sorted(owner_counts_models.items(), key=lambda x: x[1], reverse=True)[:limit]
|
204 |
+
trending_data["models"] = top_owners_models
|
205 |
+
models_owners = [owner for owner, _ in top_owners_models]
|
206 |
+
|
207 |
+
# Combine rankings for overall trending based on appearance in both lists
|
208 |
+
combined_score = {}
|
209 |
+
for i, owner in enumerate(spaces_owners):
|
210 |
+
if owner not in combined_score:
|
211 |
+
combined_score[owner] = 0
|
212 |
+
combined_score[owner] += (limit - i) # Higher rank gives more points
|
213 |
+
|
214 |
+
for i, owner in enumerate(models_owners):
|
215 |
+
if owner not in combined_score:
|
216 |
+
combined_score[owner] = 0
|
217 |
+
combined_score[owner] += (limit - i) # Higher rank gives more points
|
218 |
+
|
219 |
+
# Sort by combined score
|
220 |
+
sorted_combined = sorted(combined_score.items(), key=lambda x: x[1], reverse=True)[:limit]
|
221 |
+
trending_authors = [owner for owner, _ in sorted_combined]
|
222 |
+
|
223 |
+
return trending_authors, trending_data["spaces"], trending_data["models"]
|
224 |
+
except Exception as e:
|
225 |
+
st.error(f"Error fetching trending accounts: {str(e)}")
|
226 |
+
fallback_authors = ["ritvik77", "facebook", "google", "stabilityai", "Salesforce", "tiiuae", "bigscience"]
|
227 |
+
return fallback_authors, [(author, 0) for author in fallback_authors], [(author, 0) for author in fallback_authors]
|
228 |
+
|
229 |
+
# Rate limiting
|
230 |
+
class RateLimiter:
|
231 |
+
def __init__(self, calls_per_second=10):
|
232 |
+
self.calls_per_second = calls_per_second
|
233 |
+
self.last_call = 0
|
234 |
+
|
235 |
+
def wait(self):
|
236 |
+
current_time = time.time()
|
237 |
+
time_since_last_call = current_time - self.last_call
|
238 |
+
if time_since_last_call < (1.0 / self.calls_per_second):
|
239 |
+
time.sleep((1.0 / self.calls_per_second) - time_since_last_call)
|
240 |
+
self.last_call = time.time()
|
241 |
+
|
242 |
+
rate_limiter = RateLimiter()
|
243 |
+
|
244 |
+
# Function to fetch commits for a repository (optimized)
|
245 |
+
def fetch_commits_for_repo(repo_id, repo_type, username, selected_year):
|
246 |
+
try:
|
247 |
+
rate_limiter.wait()
|
248 |
+
# Skip private/gated repos upfront
|
249 |
+
repo_info = cached_repo_info(repo_id, repo_type)
|
250 |
+
if repo_info.private or (hasattr(repo_info, 'gated') and repo_info.gated):
|
251 |
+
return [], 0
|
252 |
+
|
253 |
+
# Get initial commit date
|
254 |
+
initial_commit_date = pd.to_datetime(repo_info.created_at).tz_localize(None).date()
|
255 |
+
commit_dates = []
|
256 |
+
commit_count = 0
|
257 |
+
|
258 |
+
# Add initial commit if it's from the selected year
|
259 |
+
if initial_commit_date.year == selected_year:
|
260 |
+
commit_dates.append(initial_commit_date)
|
261 |
+
commit_count += 1
|
262 |
+
|
263 |
+
# Get all commits
|
264 |
+
commits = cached_list_commits(repo_id, repo_type)
|
265 |
+
for commit in commits:
|
266 |
+
commit_date = pd.to_datetime(commit.created_at).tz_localize(None).date()
|
267 |
+
if commit_date.year == selected_year:
|
268 |
+
commit_dates.append(commit_date)
|
269 |
+
commit_count += 1
|
270 |
+
|
271 |
+
return commit_dates, commit_count
|
272 |
+
except Exception as e:
|
273 |
+
return [], 0
|
274 |
+
|
275 |
+
# Function to get commit events for a user (optimized)
|
276 |
+
def get_commit_events(username, kind=None, selected_year=None):
|
277 |
+
commit_dates = []
|
278 |
+
items_with_type = []
|
279 |
+
kinds = [kind] if kind else ["model", "dataset", "space"]
|
280 |
+
|
281 |
+
for k in kinds:
|
282 |
+
try:
|
283 |
+
items = cached_list_items(username, k)
|
284 |
+
items_with_type.extend((item, k) for item in items)
|
285 |
+
repo_ids = [item.id for item in items]
|
286 |
+
|
287 |
+
# Optimized parallel fetch with chunking
|
288 |
+
chunk_size = 5 # Process 5 repos at a time
|
289 |
+
for i in range(0, len(repo_ids), chunk_size):
|
290 |
+
chunk = repo_ids[i:i + chunk_size]
|
291 |
+
with ThreadPoolExecutor(max_workers=min(5, len(chunk))) as executor:
|
292 |
+
future_to_repo = {
|
293 |
+
executor.submit(fetch_commits_for_repo, repo_id, k, username, selected_year): repo_id
|
294 |
+
for repo_id in chunk
|
295 |
+
}
|
296 |
+
for future in as_completed(future_to_repo):
|
297 |
+
repo_commits, repo_count = future.result()
|
298 |
+
if repo_commits: # Only extend if we got commits
|
299 |
+
commit_dates.extend(repo_commits)
|
300 |
+
except Exception as e:
|
301 |
+
st.warning(f"Error fetching {k}s for {username}: {str(e)}")
|
302 |
+
|
303 |
+
# Create DataFrame with all commits
|
304 |
+
df = pd.DataFrame(commit_dates, columns=["date"])
|
305 |
+
if not df.empty:
|
306 |
+
df = df.drop_duplicates() # Remove any duplicate dates
|
307 |
+
return df, items_with_type
|
308 |
+
|
309 |
+
# Calendar heatmap function (optimized)
|
310 |
+
def make_calendar_heatmap(df, title, year):
|
311 |
+
if df.empty:
|
312 |
+
st.info(f"No {title.lower()} found for {year}.")
|
313 |
+
return
|
314 |
+
|
315 |
+
# Optimize DataFrame operations
|
316 |
+
df["count"] = 1
|
317 |
+
df = df.groupby("date", as_index=False).sum()
|
318 |
+
df["date"] = pd.to_datetime(df["date"])
|
319 |
+
|
320 |
+
# Create date range more efficiently
|
321 |
+
start = pd.Timestamp(f"{year}-01-01")
|
322 |
+
end = pd.Timestamp(f"{year}-12-31")
|
323 |
+
all_days = pd.date_range(start=start, end=end)
|
324 |
+
|
325 |
+
# Optimize DataFrame creation and merging
|
326 |
+
heatmap_data = pd.DataFrame({"date": all_days, "count": 0})
|
327 |
+
heatmap_data = heatmap_data.merge(df, on="date", how="left", suffixes=("", "_y"))
|
328 |
+
heatmap_data["count"] = heatmap_data["count_y"].fillna(0)
|
329 |
+
heatmap_data = heatmap_data.drop("count_y", axis=1)
|
330 |
+
|
331 |
+
# Calculate week and day of week more efficiently
|
332 |
+
heatmap_data["dow"] = heatmap_data["date"].dt.dayofweek
|
333 |
+
heatmap_data["week"] = (heatmap_data["date"] - start).dt.days // 7
|
334 |
+
|
335 |
+
# Create pivot table more efficiently
|
336 |
+
pivot = heatmap_data.pivot(index="dow", columns="week", values="count").fillna(0)
|
337 |
+
|
338 |
+
# Optimize month labels calculation
|
339 |
+
month_labels = pd.date_range(start, end, freq="MS").strftime("%b")
|
340 |
+
month_positions = pd.date_range(start, end, freq="MS").map(lambda x: (x - start).days // 7)
|
341 |
+
|
342 |
+
# Create custom colormap with specific boundaries
|
343 |
+
from matplotlib.colors import ListedColormap, BoundaryNorm
|
344 |
+
colors = ['#ebedf0', '#9be9a8', '#40c463', '#30a14e', '#216e39'] # GitHub-style green colors
|
345 |
+
bounds = [0, 1, 3, 11, 31, float('inf')] # Boundaries for color transitions
|
346 |
+
cmap = ListedColormap(colors)
|
347 |
+
norm = BoundaryNorm(bounds, cmap.N)
|
348 |
+
|
349 |
+
# Create plot more efficiently
|
350 |
+
fig, ax = plt.subplots(figsize=(12, 1.5))
|
351 |
+
|
352 |
+
# Convert pivot values to integers to ensure proper color mapping
|
353 |
+
pivot_int = pivot.astype(int)
|
354 |
+
|
355 |
+
# Create heatmap with explicit vmin and vmax
|
356 |
+
sns.heatmap(pivot_int, ax=ax, cmap=cmap, norm=norm, linewidths=0.5, linecolor="white",
|
357 |
+
square=True, cbar=False, yticklabels=["M", "T", "W", "T", "F", "S", "S"])
|
358 |
+
|
359 |
+
ax.set_title(f"{title}", fontsize=14, pad=10)
|
360 |
+
ax.set_xlabel("")
|
361 |
+
ax.set_ylabel("")
|
362 |
+
ax.set_xticks(month_positions)
|
363 |
+
ax.set_xticklabels(month_labels, fontsize=10)
|
364 |
+
ax.set_yticklabels(ax.get_yticklabels(), rotation=0, fontsize=10)
|
365 |
+
|
366 |
+
# μκ°μ ν₯μμ μν figure μ€νμΌλ§
|
367 |
+
fig.tight_layout()
|
368 |
+
fig.patch.set_facecolor('#F8F9FA')
|
369 |
+
|
370 |
+
st.pyplot(fig)
|
371 |
+
|
372 |
+
# Function to create a fancy contribution radar chart
|
373 |
+
def create_contribution_radar(username, models_count, spaces_count, datasets_count, commits_count):
|
374 |
+
# Create radar chart for contribution metrics
|
375 |
+
categories = ['Models', 'Spaces', 'Datasets', 'Activity']
|
376 |
+
values = [models_count, spaces_count, datasets_count, commits_count]
|
377 |
+
|
378 |
+
# Normalize values for better visualization
|
379 |
+
max_vals = [100, 100, 50, 500] # Reasonable max values for each category
|
380 |
+
normalized = [min(v/m, 1.0) for v, m in zip(values, max_vals)]
|
381 |
+
|
382 |
+
# Create radar chart
|
383 |
+
angles = np.linspace(0, 2*np.pi, len(categories), endpoint=False).tolist()
|
384 |
+
angles += angles[:1] # Close the loop
|
385 |
+
|
386 |
+
normalized += normalized[:1] # Close the loop
|
387 |
+
|
388 |
+
fig, ax = plt.subplots(figsize=(6, 6), subplot_kw={'polar': True}, facecolor='#F8F9FA')
|
389 |
+
|
390 |
+
# Add background grid with improved styling
|
391 |
+
ax.set_theta_offset(np.pi / 2)
|
392 |
+
ax.set_theta_direction(-1)
|
393 |
+
ax.set_thetagrids(np.degrees(angles[:-1]), categories, fontsize=12, fontweight='bold')
|
394 |
+
|
395 |
+
# 그리λ μ€νμΌλ§ κ°μ
|
396 |
+
ax.grid(color='#CCCCCC', linestyle='-', linewidth=0.5, alpha=0.7)
|
397 |
+
|
398 |
+
# Draw the chart with improved color scheme
|
399 |
+
ax.fill(angles, normalized, color='#4CAF50', alpha=0.25)
|
400 |
+
ax.plot(angles, normalized, color='#4CAF50', linewidth=3)
|
401 |
+
|
402 |
+
# Add value labels with improved styling
|
403 |
+
for i, val in enumerate(values):
|
404 |
+
angle = angles[i]
|
405 |
+
x = (normalized[i] + 0.1) * np.cos(angle)
|
406 |
+
y = (normalized[i] + 0.1) * np.sin(angle)
|
407 |
+
ax.text(angle, normalized[i] + 0.1, str(val),
|
408 |
+
ha='center', va='center', fontsize=12,
|
409 |
+
fontweight='bold', color='#1976D2')
|
410 |
+
|
411 |
+
# Add highlight circles
|
412 |
+
circles = [0.25, 0.5, 0.75, 1.0]
|
413 |
+
for circle in circles:
|
414 |
+
ax.plot(angles, [circle] * len(angles), color='gray', alpha=0.3, linewidth=0.5, linestyle='--')
|
415 |
+
|
416 |
+
ax.set_title(f"{username}'s Contribution Profile", fontsize=16, pad=20, fontweight='bold')
|
417 |
+
|
418 |
+
# λ°°κ²½ μ μμ κΈ°
|
419 |
+
ax.set_facecolor('#F8F9FA')
|
420 |
+
|
421 |
+
return fig
|
422 |
+
|
423 |
+
# Function to create contribution distribution pie chart
|
424 |
+
def create_contribution_pie(model_commits, dataset_commits, space_commits):
|
425 |
+
labels = ['Models', 'Datasets', 'Spaces']
|
426 |
+
sizes = [model_commits, dataset_commits, space_commits]
|
427 |
+
|
428 |
+
# Filter out zero values
|
429 |
+
filtered_labels = [label for label, size in zip(labels, sizes) if size > 0]
|
430 |
+
filtered_sizes = [size for size in sizes if size > 0]
|
431 |
+
|
432 |
+
if not filtered_sizes:
|
433 |
+
return None # No data to show
|
434 |
+
|
435 |
+
# Use a more attractive color scheme
|
436 |
+
colors = ['#FF9800', '#2196F3', '#4CAF50']
|
437 |
+
filtered_colors = [color for color, size in zip(colors, sizes) if size > 0]
|
438 |
+
|
439 |
+
fig, ax = plt.subplots(figsize=(7, 7), facecolor='#F8F9FA')
|
440 |
+
|
441 |
+
# Create exploded pie chart with improved styling
|
442 |
+
explode = [0.1] * len(filtered_sizes) # Explode all slices for better visualization
|
443 |
+
|
444 |
+
wedges, texts, autotexts = ax.pie(
|
445 |
+
filtered_sizes,
|
446 |
+
labels=None, # We'll add custom labels
|
447 |
+
colors=filtered_colors,
|
448 |
+
autopct='%1.1f%%',
|
449 |
+
startangle=90,
|
450 |
+
shadow=True,
|
451 |
+
explode=explode,
|
452 |
+
textprops={'fontsize': 14, 'weight': 'bold'},
|
453 |
+
wedgeprops={'edgecolor': 'white', 'linewidth': 2}
|
454 |
+
)
|
455 |
+
|
456 |
+
# Customize the percentage text
|
457 |
+
for autotext in autotexts:
|
458 |
+
autotext.set_color('white')
|
459 |
+
autotext.set_fontsize(12)
|
460 |
+
autotext.set_weight('bold')
|
461 |
+
|
462 |
+
# Add legend with custom styling
|
463 |
+
ax.legend(
|
464 |
+
wedges,
|
465 |
+
[f"{label} ({size})" for label, size in zip(filtered_labels, filtered_sizes)],
|
466 |
+
title="Contribution Types",
|
467 |
+
loc="center left",
|
468 |
+
bbox_to_anchor=(0.85, 0.5),
|
469 |
+
fontsize=12
|
470 |
+
)
|
471 |
+
|
472 |
+
ax.set_title('Distribution of Contributions by Type', fontsize=16, pad=20, fontweight='bold')
|
473 |
+
ax.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle
|
474 |
+
|
475 |
+
return fig
|
476 |
+
|
477 |
+
# Function to create monthly activity chart
|
478 |
+
def create_monthly_activity(df, year):
|
479 |
+
if df.empty:
|
480 |
+
return None
|
481 |
+
|
482 |
+
# Aggregate by month
|
483 |
+
df['date'] = pd.to_datetime(df['date'])
|
484 |
+
df['month'] = df['date'].dt.month
|
485 |
+
df['month_name'] = df['date'].dt.strftime('%b')
|
486 |
+
|
487 |
+
# Count by month and ensure all months are present
|
488 |
+
month_order = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
|
489 |
+
counts_by_month = df.groupby('month_name')['date'].count()
|
490 |
+
monthly_counts = pd.Series([counts_by_month.get(m, 0) for m in month_order], index=month_order)
|
491 |
+
|
492 |
+
# Create bar chart with improved styling
|
493 |
+
fig, ax = plt.subplots(figsize=(14, 6), facecolor='#F8F9FA')
|
494 |
+
|
495 |
+
# Create bars with gradient colors based on activity level
|
496 |
+
norm = plt.Normalize(0, monthly_counts.max() if monthly_counts.max() > 0 else 1)
|
497 |
+
colors = plt.cm.viridis(norm(monthly_counts.values))
|
498 |
+
|
499 |
+
bars = ax.bar(monthly_counts.index, monthly_counts.values, color=colors, width=0.7)
|
500 |
+
|
501 |
+
# Highlight the month with most activity
|
502 |
+
if monthly_counts.max() > 0:
|
503 |
+
max_idx = monthly_counts.argmax()
|
504 |
+
bars[max_idx].set_color('#FF5722')
|
505 |
+
bars[max_idx].set_edgecolor('black')
|
506 |
+
bars[max_idx].set_linewidth(1.5)
|
507 |
+
|
508 |
+
# Add labels and styling with enhanced design
|
509 |
+
ax.set_title(f'Monthly Activity in {year}', fontsize=18, pad=20, fontweight='bold')
|
510 |
+
ax.set_xlabel('Month', fontsize=14, labelpad=10)
|
511 |
+
ax.set_ylabel('Number of Contributions', fontsize=14, labelpad=10)
|
512 |
+
|
513 |
+
# Add value labels on top of bars with improved styling
|
514 |
+
for i, count in enumerate(monthly_counts.values):
|
515 |
+
if count > 0:
|
516 |
+
ax.text(i, count + 0.5, str(int(count)), ha='center', fontsize=12, fontweight='bold')
|
517 |
+
|
518 |
+
# Add grid for better readability with improved styling
|
519 |
+
ax.grid(axis='y', linestyle='--', alpha=0.7, color='#CCCCCC')
|
520 |
+
ax.set_axisbelow(True) # Grid lines behind bars
|
521 |
+
|
522 |
+
# Style the chart borders and background
|
523 |
+
ax.spines['top'].set_visible(False)
|
524 |
+
ax.spines['right'].set_visible(False)
|
525 |
+
ax.spines['left'].set_linewidth(0.5)
|
526 |
+
ax.spines['bottom'].set_linewidth(0.5)
|
527 |
+
|
528 |
+
# Adjust tick parameters for better look
|
529 |
+
ax.tick_params(axis='x', labelsize=12, pad=5)
|
530 |
+
ax.tick_params(axis='y', labelsize=12, pad=5)
|
531 |
+
|
532 |
+
plt.tight_layout()
|
533 |
+
|
534 |
+
return fig
|
535 |
+
|
536 |
+
# Function to render follower growth simulation
|
537 |
+
def simulate_follower_data(username, spaces_count, models_count, total_commits):
|
538 |
+
# Simulate follower growth based on contribution metrics
|
539 |
+
# This is just a simulation for visual purposes
|
540 |
+
import numpy as np
|
541 |
+
from datetime import timedelta
|
542 |
+
|
543 |
+
# Start with a base number of followers proportional to contribution metrics
|
544 |
+
base_followers = max(10, int((spaces_count * 2 + models_count * 3 + total_commits/10) / 6))
|
545 |
+
|
546 |
+
# Generate timestamps for the past year
|
547 |
+
end_date = datetime.now()
|
548 |
+
start_date = end_date - timedelta(days=365)
|
549 |
+
dates = pd.date_range(start=start_date, end=end_date, freq='W') # Weekly data points
|
550 |
+
|
551 |
+
# Generate follower growth with some randomness
|
552 |
+
followers = []
|
553 |
+
current = base_followers / 2 # Start from half the base
|
554 |
+
|
555 |
+
for i in range(len(dates)):
|
556 |
+
growth_factor = 1 + (np.random.random() * 0.1) # Random growth between 0% and 10%
|
557 |
+
current = current * growth_factor
|
558 |
+
followers.append(int(current))
|
559 |
+
|
560 |
+
# Ensure end value matches our base_followers estimate
|
561 |
+
followers[-1] = base_followers
|
562 |
+
|
563 |
+
# Create the chart with improved styling
|
564 |
+
fig, ax = plt.subplots(figsize=(14, 6), facecolor='#F8F9FA')
|
565 |
+
|
566 |
+
# Create gradient line for better visualization
|
567 |
+
points = np.array([dates, followers]).T.reshape(-1, 1, 2)
|
568 |
+
segments = np.concatenate([points[:-1], points[1:]], axis=1)
|
569 |
+
|
570 |
+
from matplotlib.collections import LineCollection
|
571 |
+
norm = plt.Normalize(0, len(segments))
|
572 |
+
lc = LineCollection(segments, cmap='viridis', norm=norm, linewidth=3, alpha=0.8)
|
573 |
+
lc.set_array(np.arange(len(segments)))
|
574 |
+
line = ax.add_collection(lc)
|
575 |
+
|
576 |
+
# Add markers
|
577 |
+
ax.scatter(dates, followers, s=50, color='#9C27B0', alpha=0.8, zorder=10)
|
578 |
+
|
579 |
+
# Add styling with enhanced design
|
580 |
+
ax.set_title(f"Estimated Follower Growth for {username}", fontsize=18, pad=20, fontweight='bold')
|
581 |
+
ax.set_xlabel("Date", fontsize=14, labelpad=10)
|
582 |
+
ax.set_ylabel("Followers", fontsize=14, labelpad=10)
|
583 |
+
|
584 |
+
# Format the axes limits
|
585 |
+
ax.set_xlim(dates.min(), dates.max())
|
586 |
+
ax.set_ylim(0, max(followers) * 1.1)
|
587 |
+
|
588 |
+
# Add grid for better readability with improved styling
|
589 |
+
ax.grid(True, linestyle='--', alpha=0.7, color='#CCCCCC')
|
590 |
+
ax.set_axisbelow(True) # Grid lines behind plot
|
591 |
+
|
592 |
+
# Style the chart borders and background
|
593 |
+
ax.spines['top'].set_visible(False)
|
594 |
+
ax.spines['right'].set_visible(False)
|
595 |
+
ax.spines['left'].set_linewidth(0.5)
|
596 |
+
ax.spines['bottom'].set_linewidth(0.5)
|
597 |
+
|
598 |
+
# Adjust tick parameters for better look
|
599 |
+
ax.tick_params(axis='x', labelsize=12, rotation=45)
|
600 |
+
ax.tick_params(axis='y', labelsize=12)
|
601 |
+
|
602 |
+
# Add annotations for start and end points
|
603 |
+
ax.annotate(f"Start: {followers[0]}",
|
604 |
+
xy=(dates[0], followers[0]),
|
605 |
+
xytext=(10, 10),
|
606 |
+
textcoords='offset points',
|
607 |
+
fontsize=12,
|
608 |
+
fontweight='bold',
|
609 |
+
color='#9C27B0',
|
610 |
+
bbox=dict(boxstyle="round,pad=0.3", fc="#F3E5F5", ec="#9C27B0", alpha=0.8))
|
611 |
+
|
612 |
+
ax.annotate(f"Current: {followers[-1]}",
|
613 |
+
xy=(dates[-1], followers[-1]),
|
614 |
+
xytext=(-10, 10),
|
615 |
+
textcoords='offset points',
|
616 |
+
fontsize=12,
|
617 |
+
fontweight='bold',
|
618 |
+
color='#9C27B0',
|
619 |
+
ha='right',
|
620 |
+
bbox=dict(boxstyle="round,pad=0.3", fc="#F3E5F5", ec="#9C27B0", alpha=0.8))
|
621 |
+
|
622 |
+
plt.tight_layout()
|
623 |
+
|
624 |
+
return fig
|
625 |
+
|
626 |
+
# Function to create ranking position visualization
|
627 |
+
def create_ranking_chart(username, overall_rank, spaces_rank, models_rank):
|
628 |
+
if not (overall_rank or spaces_rank or models_rank):
|
629 |
+
return None
|
630 |
+
|
631 |
+
# Create a horizontal bar chart for rankings with improved styling
|
632 |
+
fig, ax = plt.subplots(figsize=(12, 5), facecolor='#F8F9FA')
|
633 |
+
|
634 |
+
categories = []
|
635 |
+
positions = []
|
636 |
+
colors = []
|
637 |
+
rank_values = []
|
638 |
+
|
639 |
+
if overall_rank:
|
640 |
+
categories.append('Overall')
|
641 |
+
positions.append(101 - overall_rank) # Invert rank for visualization (higher is better)
|
642 |
+
colors.append('#673AB7')
|
643 |
+
rank_values.append(overall_rank)
|
644 |
+
|
645 |
+
if spaces_rank:
|
646 |
+
categories.append('Spaces')
|
647 |
+
positions.append(101 - spaces_rank)
|
648 |
+
colors.append('#2196F3')
|
649 |
+
rank_values.append(spaces_rank)
|
650 |
+
|
651 |
+
if models_rank:
|
652 |
+
categories.append('Models')
|
653 |
+
positions.append(101 - models_rank)
|
654 |
+
colors.append('#FF9800')
|
655 |
+
rank_values.append(models_rank)
|
656 |
+
|
657 |
+
# Create horizontal bars with enhanced styling
|
658 |
+
bars = ax.barh(categories, positions, color=colors, alpha=0.8, height=0.6,
|
659 |
+
edgecolor='white', linewidth=1.5)
|
660 |
+
|
661 |
+
# Add rank values as text with improved styling
|
662 |
+
for i, bar in enumerate(bars):
|
663 |
+
ax.text(bar.get_width() + 2, bar.get_y() + bar.get_height()/2,
|
664 |
+
f'Rank #{rank_values[i]}', va='center', fontsize=12,
|
665 |
+
fontweight='bold', color=colors[i])
|
666 |
+
|
667 |
+
# Set chart properties with enhanced styling
|
668 |
+
ax.set_xlim(0, 105)
|
669 |
+
ax.set_title(f"Ranking Positions for {username} (Top 100)", fontsize=18, pad=20, fontweight='bold')
|
670 |
+
ax.set_xlabel("Percentile (higher is better)", fontsize=14, labelpad=10)
|
671 |
+
|
672 |
+
# Add explanatory text
|
673 |
+
ax.text(50, -0.6, "β Lower rank (higher number) | Higher rank (lower number) β",
|
674 |
+
ha='center', va='center', fontsize=10, fontweight='bold', color='#666666')
|
675 |
+
|
676 |
+
# Add a vertical line at 90th percentile to highlight top 10 with improved styling
|
677 |
+
ax.axvline(x=90, color='#FF5252', linestyle='--', alpha=0.7, linewidth=2)
|
678 |
+
ax.text(92, len(categories)/2, 'Top 10', color='#D32F2F', fontsize=12,
|
679 |
+
rotation=90, va='center', fontweight='bold')
|
680 |
+
|
681 |
+
# Style the chart borders and background
|
682 |
+
ax.spines['top'].set_visible(False)
|
683 |
+
ax.spines['right'].set_visible(False)
|
684 |
+
ax.spines['left'].set_linewidth(0.5)
|
685 |
+
ax.spines['bottom'].set_linewidth(0.5)
|
686 |
+
|
687 |
+
# Adjust tick parameters for better look
|
688 |
+
ax.tick_params(axis='x', labelsize=12)
|
689 |
+
ax.tick_params(axis='y', labelsize=14, pad=5)
|
690 |
+
|
691 |
+
# Add grid for better readability
|
692 |
+
ax.grid(axis='x', linestyle='--', alpha=0.5, color='#CCCCCC')
|
693 |
+
ax.set_axisbelow(True) # Grid lines behind bars
|
694 |
+
|
695 |
+
# Invert x-axis to show ranking position more intuitively
|
696 |
+
ax.invert_xaxis()
|
697 |
+
|
698 |
+
plt.tight_layout()
|
699 |
+
return fig
|
700 |
+
|
701 |
+
# Fetch trending accounts with a loading spinner (do this once at the beginning)
|
702 |
+
with st.spinner("Loading trending accounts..."):
|
703 |
+
trending_accounts, top_owners_spaces, top_owners_models = get_trending_accounts(limit=100)
|
704 |
+
|
705 |
+
# Sidebar
|
706 |
+
with st.sidebar:
|
707 |
+
st.markdown('<h1 style="text-align: center; color: #1E88E5;">π€ Contributor</h1>', unsafe_allow_html=True)
|
708 |
+
|
709 |
+
# Create tabs for Spaces and Models rankings - ONLY SHOWING FIRST TWO TABS
|
710 |
+
tab1, tab2 = st.tabs([
|
711 |
+
"Top 100 Overall",
|
712 |
+
"Top Spaces & Models"
|
713 |
+
])
|
714 |
+
|
715 |
+
with tab1:
|
716 |
+
# Show combined trending accounts list
|
717 |
+
st.markdown('<div class="subheader"><h3>π₯ Top 100 Contributors</h3></div>', unsafe_allow_html=True)
|
718 |
+
|
719 |
+
# Create a data frame for the table
|
720 |
+
if trending_accounts:
|
721 |
+
# Create a mapping from username to Spaces and Models rankings
|
722 |
+
spaces_rank = {owner: idx+1 for idx, (owner, _) in enumerate(top_owners_spaces)}
|
723 |
+
models_rank = {owner: idx+1 for idx, (owner, _) in enumerate(top_owners_models)}
|
724 |
+
|
725 |
+
# Create the overall ranking dataframe with trophies for top 3
|
726 |
+
overall_data = []
|
727 |
+
for idx, username in enumerate(trending_accounts[:100]):
|
728 |
+
# Add trophy emojis for top 3
|
729 |
+
rank_display = ""
|
730 |
+
if idx == 0:
|
731 |
+
rank_display = "π " # Gold trophy for 1st place
|
732 |
+
elif idx == 1:
|
733 |
+
rank_display = "π " # Silver trophy for 2nd place
|
734 |
+
elif idx == 2:
|
735 |
+
rank_display = "π " # Bronze trophy for 3rd place
|
736 |
+
|
737 |
+
# Use strings for all rankings to avoid type conversion issues
|
738 |
+
spaces_position = str(spaces_rank.get(username, "-"))
|
739 |
+
models_position = str(models_rank.get(username, "-"))
|
740 |
+
overall_data.append([f"{rank_display}{username}", spaces_position, models_position])
|
741 |
+
|
742 |
+
ranking_data_overall = pd.DataFrame(
|
743 |
+
overall_data,
|
744 |
+
columns=["Contributor", "Spaces Rank", "Models Rank"]
|
745 |
+
)
|
746 |
+
ranking_data_overall.index = ranking_data_overall.index + 1 # Start index from 1 for ranking
|
747 |
+
|
748 |
+
st.dataframe(
|
749 |
+
ranking_data_overall,
|
750 |
+
column_config={
|
751 |
+
"Contributor": st.column_config.TextColumn("Contributor"),
|
752 |
+
"Spaces Rank": st.column_config.TextColumn("Spaces Rank"),
|
753 |
+
"Models Rank": st.column_config.TextColumn("Models Rank")
|
754 |
+
},
|
755 |
+
use_container_width=True,
|
756 |
+
hide_index=False
|
757 |
+
)
|
758 |
+
|
759 |
+
with tab2:
|
760 |
+
# Show trending accounts by Spaces & Models
|
761 |
+
st.markdown('<div class="subheader"><h3>π Spaces Leaders</h3></div>', unsafe_allow_html=True)
|
762 |
+
|
763 |
+
# Create a data frame for the Spaces table with medals for top 3
|
764 |
+
if top_owners_spaces:
|
765 |
+
spaces_data = []
|
766 |
+
for idx, (owner, count) in enumerate(top_owners_spaces[:50]):
|
767 |
+
# Add medal emojis for top 3
|
768 |
+
rank_display = ""
|
769 |
+
if idx == 0:
|
770 |
+
rank_display = "π₯ " # Gold medal for 1st place
|
771 |
+
elif idx == 1:
|
772 |
+
rank_display = "π₯ " # Silver medal for 2nd place
|
773 |
+
elif idx == 2:
|
774 |
+
rank_display = "π₯ " # Bronze medal for 3rd place
|
775 |
+
|
776 |
+
spaces_data.append([f"{rank_display}{owner}", count])
|
777 |
+
|
778 |
+
ranking_data_spaces = pd.DataFrame(spaces_data, columns=["Contributor", "Spaces Count(Top 500 positions)"])
|
779 |
+
ranking_data_spaces.index = ranking_data_spaces.index + 1 # Start index from 1 for ranking
|
780 |
+
|
781 |
+
st.dataframe(
|
782 |
+
ranking_data_spaces,
|
783 |
+
column_config={
|
784 |
+
"Contributor": st.column_config.TextColumn("Contributor"),
|
785 |
+
"Spaces Count": st.column_config.NumberColumn("Spaces Count", format="%d")
|
786 |
+
},
|
787 |
+
use_container_width=True,
|
788 |
+
hide_index=False
|
789 |
+
)
|
790 |
+
|
791 |
+
# Display the top Models accounts list with medals for top 3
|
792 |
+
st.markdown('<div class="subheader"><h3>π§ Models Leaders</h3></div>', unsafe_allow_html=True)
|
793 |
+
|
794 |
+
# Create a data frame for the Models table with medals for top 3
|
795 |
+
if top_owners_models:
|
796 |
+
models_data = []
|
797 |
+
for idx, (owner, count) in enumerate(top_owners_models[:50]):
|
798 |
+
# Add medal emojis for top 3
|
799 |
+
rank_display = ""
|
800 |
+
if idx == 0:
|
801 |
+
rank_display = "π₯ " # Gold medal for 1st place
|
802 |
+
elif idx == 1:
|
803 |
+
rank_display = "π₯ " # Silver medal for 2nd place
|
804 |
+
elif idx == 2:
|
805 |
+
rank_display = "π₯ " # Bronze medal for 3rd place
|
806 |
+
|
807 |
+
models_data.append([f"{rank_display}{owner}", count])
|
808 |
+
|
809 |
+
ranking_data_models = pd.DataFrame(models_data, columns=["Contributor", "Models Count(Top 500 positions)"])
|
810 |
+
ranking_data_models.index = ranking_data_models.index + 1 # Start index from 1 for ranking
|
811 |
+
|
812 |
+
st.dataframe(
|
813 |
+
ranking_data_models,
|
814 |
+
column_config={
|
815 |
+
"Contributor": st.column_config.TextColumn("Contributor"),
|
816 |
+
"Models Count": st.column_config.NumberColumn("Models Count", format="%d")
|
817 |
+
},
|
818 |
+
use_container_width=True,
|
819 |
+
hide_index=False
|
820 |
+
)
|
821 |
+
|
822 |
+
# Add visual divider
|
823 |
+
st.markdown('<hr style="margin: 2rem 0; border-color: #e0e0e0;">', unsafe_allow_html=True)
|
824 |
+
|
825 |
+
# Display contributor selection with enhanced styling
|
826 |
+
st.markdown('<div class="subheader"><h3>Select Contributor</h3></div>', unsafe_allow_html=True)
|
827 |
+
selected_trending = st.selectbox(
|
828 |
+
"Choose from trending accounts",
|
829 |
+
options=trending_accounts[:100], # Limit to top 100
|
830 |
+
index=0 if trending_accounts else None,
|
831 |
+
key="trending_selectbox"
|
832 |
+
)
|
833 |
+
|
834 |
+
# Custom account input option with enhanced styling
|
835 |
+
st.markdown('<div style="text-align: center; margin: 15px 0; font-weight: bold;">- OR -</div>', unsafe_allow_html=True)
|
836 |
+
custom = st.text_input("Enter a username/organization:", placeholder="e.g. facebook, google...")
|
837 |
+
|
838 |
+
# Add visual divider
|
839 |
+
st.markdown('<hr style="margin: 1.5rem 0; border-color: #e0e0e0;">', unsafe_allow_html=True)
|
840 |
+
|
841 |
+
# Set username based on selection or custom input
|
842 |
+
if custom.strip():
|
843 |
+
username = custom.strip()
|
844 |
+
elif selected_trending:
|
845 |
+
username = selected_trending
|
846 |
+
else:
|
847 |
+
username = "facebook" # Default fallback
|
848 |
+
|
849 |
+
# Year selection with enhanced styling
|
850 |
+
st.markdown('<div class="subheader"><h3>ποΈ Time Period</h3></div>', unsafe_allow_html=True)
|
851 |
+
year_options = list(range(datetime.now().year, 2017, -1))
|
852 |
+
selected_year = st.selectbox("Select Year:", options=year_options)
|
853 |
+
|
854 |
+
# Additional options for customization with enhanced styling
|
855 |
+
st.markdown('<div class="subheader"><h3>βοΈ Display Options</h3></div>', unsafe_allow_html=True)
|
856 |
+
show_models = st.checkbox("Show Models", value=True)
|
857 |
+
show_datasets = st.checkbox("Show Datasets", value=True)
|
858 |
+
show_spaces = st.checkbox("Show Spaces", value=True)
|
859 |
+
|
860 |
+
# Main Content
|
861 |
+
st.markdown(f'<h1 style="text-align: center; color: #1E88E5; margin-bottom: 2rem;">π€ Hugging Face Contributions</h1>', unsafe_allow_html=True)
|
862 |
+
|
863 |
+
if username:
|
864 |
+
# Create a header card with contributor info
|
865 |
+
header_col1, header_col2 = st.columns([1, 2])
|
866 |
+
with header_col1:
|
867 |
+
st.markdown(f'<div style="background-color: #E3F2FD; padding: 20px; border-radius: 10px; border-left: 5px solid #1E88E5;">'
|
868 |
+
f'<h2 style="color: #1E88E5;">π€ {username}</h2>'
|
869 |
+
f'<p style="font-size: 16px;">Analyzing contributions for {selected_year}</p>'
|
870 |
+
f'<p><a href="https://huggingface.co/{username}" target="_blank" style="color: #1E88E5; font-weight: bold;">View Profile</a></p>'
|
871 |
+
f'</div>', unsafe_allow_html=True)
|
872 |
+
|
873 |
+
with header_col2:
|
874 |
+
# Add explanation about the app
|
875 |
+
st.markdown(f'<div style="background-color: #F3E5F5; padding: 20px; border-radius: 10px; border-left: 5px solid #9C27B0;">'
|
876 |
+
f'<h3 style="color: #9C27B0;">About This Analysis</h3>'
|
877 |
+
f'<p>This dashboard analyzes {username}\'s contributions to Hugging Face in {selected_year}, including models, datasets, and spaces.</p>'
|
878 |
+
f'<p style="font-style: italic; font-size: 12px;">* Some metrics like follower growth are simulated for visualization purposes.</p>'
|
879 |
+
f'</div>', unsafe_allow_html=True)
|
880 |
+
|
881 |
+
with st.spinner(f"Fetching contribution data for {username}..."):
|
882 |
+
# Initialize variables for tracking
|
883 |
+
overall_rank = None
|
884 |
+
spaces_rank = None
|
885 |
+
models_rank = None
|
886 |
+
spaces_count = 0
|
887 |
+
models_count = 0
|
888 |
+
datasets_count = 0
|
889 |
+
|
890 |
+
# Display contributor rank if in top 100
|
891 |
+
if username in trending_accounts[:100]:
|
892 |
+
overall_rank = trending_accounts.index(username) + 1
|
893 |
+
|
894 |
+
# Create a prominent ranking display
|
895 |
+
st.markdown(f'<div style="background-color: #FFF8E1; padding: 20px; border-radius: 10px; border-left: 5px solid #FFC107; margin: 1rem 0;">'
|
896 |
+
f'<h2 style="color: #FFA000; text-align: center;">π Ranked #{overall_rank} in Top Contributors</h2>'
|
897 |
+
f'</div>', unsafe_allow_html=True)
|
898 |
+
|
899 |
+
# Find user in spaces ranking
|
900 |
+
for i, (owner, count) in enumerate(top_owners_spaces):
|
901 |
+
if owner == username:
|
902 |
+
spaces_rank = i+1
|
903 |
+
spaces_count = count
|
904 |
+
break
|
905 |
+
|
906 |
+
# Find user in models ranking
|
907 |
+
for i, (owner, count) in enumerate(top_owners_models):
|
908 |
+
if owner == username:
|
909 |
+
models_rank = i+1
|
910 |
+
models_count = count
|
911 |
+
break
|
912 |
+
|
913 |
+
# Display ranking visualization
|
914 |
+
rank_chart = create_ranking_chart(username, overall_rank, spaces_rank, models_rank)
|
915 |
+
if rank_chart:
|
916 |
+
st.pyplot(rank_chart)
|
917 |
+
|
918 |
+
# Create a dictionary to store commits by type
|
919 |
+
commits_by_type = {}
|
920 |
+
commit_counts_by_type = {}
|
921 |
+
|
922 |
+
# Determine which types to fetch based on checkboxes
|
923 |
+
types_to_fetch = []
|
924 |
+
if show_models:
|
925 |
+
types_to_fetch.append("model")
|
926 |
+
if show_datasets:
|
927 |
+
types_to_fetch.append("dataset")
|
928 |
+
if show_spaces:
|
929 |
+
types_to_fetch.append("space")
|
930 |
+
|
931 |
+
if not types_to_fetch:
|
932 |
+
st.warning("Please select at least one content type to display (Models, Datasets, or Spaces)")
|
933 |
+
st.stop()
|
934 |
+
|
935 |
+
# Create a progress container
|
936 |
+
progress_container = st.container()
|
937 |
+
progress_container.markdown('<h3 style="color: #1E88E5;">Fetching Repository Data...</h3>', unsafe_allow_html=True)
|
938 |
+
progress_bar = progress_container.progress(0)
|
939 |
+
|
940 |
+
# Fetch commits for each selected type
|
941 |
+
for type_index, kind in enumerate(types_to_fetch):
|
942 |
+
try:
|
943 |
+
items = cached_list_items(username, kind)
|
944 |
+
|
945 |
+
# Update counts for radar chart
|
946 |
+
if kind == "model":
|
947 |
+
models_count = len(items)
|
948 |
+
elif kind == "dataset":
|
949 |
+
datasets_count = len(items)
|
950 |
+
elif kind == "space":
|
951 |
+
spaces_count = len(items)
|
952 |
+
|
953 |
+
repo_ids = [item.id for item in items]
|
954 |
+
|
955 |
+
progress_container.info(f"Found {len(repo_ids)} {kind}s for {username}")
|
956 |
+
|
957 |
+
# Process repos in chunks
|
958 |
+
chunk_size = 5
|
959 |
+
total_commits = 0
|
960 |
+
all_commit_dates = []
|
961 |
+
|
962 |
+
for i in range(0, len(repo_ids), chunk_size):
|
963 |
+
chunk = repo_ids[i:i + chunk_size]
|
964 |
+
with ThreadPoolExecutor(max_workers=min(5, len(chunk))) as executor:
|
965 |
+
future_to_repo = {
|
966 |
+
executor.submit(fetch_commits_for_repo, repo_id, kind, username, selected_year): repo_id
|
967 |
+
for repo_id in chunk
|
968 |
+
}
|
969 |
+
for future in as_completed(future_to_repo):
|
970 |
+
repo_commits, repo_count = future.result()
|
971 |
+
if repo_commits:
|
972 |
+
all_commit_dates.extend(repo_commits)
|
973 |
+
total_commits += repo_count
|
974 |
+
|
975 |
+
# Update progress for all types
|
976 |
+
progress_per_type = 1.0 / len(types_to_fetch)
|
977 |
+
current_type_progress = min(1.0, (i + len(chunk)) / max(1, len(repo_ids)))
|
978 |
+
overall_progress = (type_index * progress_per_type) + (current_type_progress * progress_per_type)
|
979 |
+
progress_bar.progress(overall_progress)
|
980 |
+
|
981 |
+
commits_by_type[kind] = all_commit_dates
|
982 |
+
commit_counts_by_type[kind] = total_commits
|
983 |
+
|
984 |
+
except Exception as e:
|
985 |
+
st.warning(f"Error fetching {kind}s for {username}: {str(e)}")
|
986 |
+
commits_by_type[kind] = []
|
987 |
+
commit_counts_by_type[kind] = 0
|
988 |
+
|
989 |
+
# Complete progress
|
990 |
+
progress_bar.progress(1.0)
|
991 |
+
progress_container.success("Data fetching complete!")
|
992 |
+
time.sleep(0.5) # Short pause for visual feedback
|
993 |
+
progress_container.empty() # Clear the progress indicators
|
994 |
+
|
995 |
+
# Calculate total commits across all types
|
996 |
+
total_commits = sum(commit_counts_by_type.values())
|
997 |
+
|
998 |
+
# Main dashboard layout with improved structure
|
999 |
+
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">Activity Overview</h2>', unsafe_allow_html=True)
|
1000 |
+
|
1001 |
+
# Profile summary
|
1002 |
+
profile_col1, profile_col2 = st.columns([1, 2])
|
1003 |
+
|
1004 |
+
with profile_col1:
|
1005 |
+
# Create a stats card with key metrics
|
1006 |
+
st.markdown(f'<div style="background-color: white; padding: 20px; border-radius: 10px; box-shadow: 0 2px 10px rgba(0,0,0,0.1);">'
|
1007 |
+
f'<h3 style="color: #1E88E5; text-align: center; margin-bottom: 15px;">Contribution Stats</h3>'
|
1008 |
+
f'<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">'
|
1009 |
+
f'<span style="font-weight: bold;">Total Commits:</span><span>{total_commits}</span></div>'
|
1010 |
+
f'<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">'
|
1011 |
+
f'<span style="font-weight: bold;">Models:</span><span>{models_count}</span></div>'
|
1012 |
+
f'<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">'
|
1013 |
+
f'<span style="font-weight: bold;">Datasets:</span><span>{datasets_count}</span></div>'
|
1014 |
+
f'<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">'
|
1015 |
+
f'<span style="font-weight: bold;">Spaces:</span><span>{spaces_count}</span></div>'
|
1016 |
+
f'</div>', unsafe_allow_html=True)
|
1017 |
+
|
1018 |
+
# Type breakdown pie chart
|
1019 |
+
model_commits = commit_counts_by_type.get("model", 0)
|
1020 |
+
dataset_commits = commit_counts_by_type.get("dataset", 0)
|
1021 |
+
space_commits = commit_counts_by_type.get("space", 0)
|
1022 |
+
|
1023 |
+
pie_chart = create_contribution_pie(model_commits, dataset_commits, space_commits)
|
1024 |
+
if pie_chart:
|
1025 |
+
st.pyplot(pie_chart)
|
1026 |
+
|
1027 |
+
with profile_col2:
|
1028 |
+
# Display contribution radar chart
|
1029 |
+
radar_fig = create_contribution_radar(username, models_count, spaces_count, datasets_count, total_commits)
|
1030 |
+
st.pyplot(radar_fig)
|
1031 |
+
|
1032 |
+
# Create DataFrame for all commits
|
1033 |
+
all_commits = []
|
1034 |
+
for commits in commits_by_type.values():
|
1035 |
+
all_commits.extend(commits)
|
1036 |
+
all_df = pd.DataFrame(all_commits, columns=["date"])
|
1037 |
+
if not all_df.empty:
|
1038 |
+
all_df = all_df.drop_duplicates() # Remove any duplicate dates
|
1039 |
+
|
1040 |
+
# Calendar heatmap for all commits in a separate section
|
1041 |
+
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">Contribution Calendar</h2>', unsafe_allow_html=True)
|
1042 |
+
|
1043 |
+
if not all_df.empty:
|
1044 |
+
make_calendar_heatmap(all_df, "All Contributions", selected_year)
|
1045 |
+
else:
|
1046 |
+
st.info(f"No contributions found for {username} in {selected_year}")
|
1047 |
+
|
1048 |
+
# Monthly activity chart
|
1049 |
+
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">Monthly Activity</h2>', unsafe_allow_html=True)
|
1050 |
+
|
1051 |
+
monthly_fig = create_monthly_activity(all_df, selected_year)
|
1052 |
+
if monthly_fig:
|
1053 |
+
st.pyplot(monthly_fig)
|
1054 |
+
else:
|
1055 |
+
st.info(f"No activity data available for {username} in {selected_year}")
|
1056 |
+
|
1057 |
+
# Follower growth simulation
|
1058 |
+
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">Growth Projection</h2>', unsafe_allow_html=True)
|
1059 |
+
st.markdown('<div style="background-color: #EDE7F6; padding: 10px; border-radius: 5px; margin-bottom: 15px;">'
|
1060 |
+
'<p style="font-style: italic; margin: 0;">π This is a simulation based on contribution metrics - for visualization purposes only</p>'
|
1061 |
+
'</div>', unsafe_allow_html=True)
|
1062 |
+
|
1063 |
+
follower_chart = simulate_follower_data(username, spaces_count, models_count, total_commits)
|
1064 |
+
st.pyplot(follower_chart)
|
1065 |
+
|
1066 |
+
# Analytics summary section
|
1067 |
+
if total_commits > 0:
|
1068 |
+
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">π Analytics Summary</h2>', unsafe_allow_html=True)
|
1069 |
+
|
1070 |
+
# Contribution pattern analysis
|
1071 |
+
monthly_df = pd.DataFrame(all_commits, columns=["date"])
|
1072 |
+
monthly_df['date'] = pd.to_datetime(monthly_df['date'])
|
1073 |
+
monthly_df['month'] = monthly_df['date'].dt.month
|
1074 |
+
|
1075 |
+
if not monthly_df.empty:
|
1076 |
+
most_active_month = monthly_df['month'].value_counts().idxmax()
|
1077 |
+
month_name = datetime(2020, most_active_month, 1).strftime('%B')
|
1078 |
+
|
1079 |
+
# Create a summary card
|
1080 |
+
st.markdown(f'<div style="background-color: white; padding: 25px; border-radius: 10px; box-shadow: 0 2px 10px rgba(0,0,0,0.1);">'
|
1081 |
+
f'<h3 style="color: #1E88E5; border-bottom: 1px solid #E0E0E0; padding-bottom: 10px;">Activity Analysis for {username}</h3>'
|
1082 |
+
f'<ul style="list-style-type: none; padding-left: 5px;">'
|
1083 |
+
f'<li style="margin: 15px 0; font-size: 16px;">π <strong>Total Activity:</strong> {total_commits} contributions in {selected_year}</li>'
|
1084 |
+
f'<li style="margin: 15px 0; font-size: 16px;">ποΈ <strong>Most Active Month:</strong> {month_name} with {monthly_df["month"].value_counts().max()} contributions</li>'
|
1085 |
+
f'<li style="margin: 15px 0; font-size: 16px;">𧩠<strong>Repository Breakdown:</strong> {models_count} Models, {spaces_count} Spaces, {datasets_count} Datasets</li>'
|
1086 |
+
f'</ul>', unsafe_allow_html=True)
|
1087 |
+
|
1088 |
+
# Add ranking context if available
|
1089 |
+
if overall_rank:
|
1090 |
+
percentile = 100 - overall_rank
|
1091 |
+
st.markdown(f'<div style="margin-top: 20px;">'
|
1092 |
+
f'<h3 style="color: #1E88E5; border-bottom: 1px solid #E0E0E0; padding-bottom: 10px;">Ranking Analysis</h3>'
|
1093 |
+
f'<ul style="list-style-type: none; padding-left: 5px;">'
|
1094 |
+
f'<li style="margin: 15px 0; font-size: 16px;">π <strong>Overall Ranking:</strong> #{overall_rank} (Top {percentile}% of contributors)</li>', unsafe_allow_html=True)
|
1095 |
+
|
1096 |
+
badge_html = '<div style="margin: 20px 0;">'
|
1097 |
+
|
1098 |
+
if spaces_rank and spaces_rank <= 10:
|
1099 |
+
badge_html += f'<span style="background-color: #FFECB3; color: #FF6F00; padding: 8px 15px; border-radius: 20px; font-weight: bold; margin-right: 10px; display: inline-block; margin-bottom: 10px;">π Elite Spaces Contributor (#{spaces_rank})</span>'
|
1100 |
+
elif spaces_rank and spaces_rank <= 30:
|
1101 |
+
badge_html += f'<span style="background-color: #E1F5FE; color: #0277BD; padding: 8px 15px; border-radius: 20px; font-weight: bold; margin-right: 10px; display: inline-block; margin-bottom: 10px;">β¨ Outstanding Spaces Contributor (#{spaces_rank})</span>'
|
1102 |
+
|
1103 |
+
if models_rank and models_rank <= 10:
|
1104 |
+
badge_html += f'<span style="background-color: #FFECB3; color: #FF6F00; padding: 8px 15px; border-radius: 20px; font-weight: bold; margin-right: 10px; display: inline-block; margin-bottom: 10px;">π Elite Models Contributor (#{models_rank})</span>'
|
1105 |
+
elif models_rank and models_rank <= 30:
|
1106 |
+
badge_html += f'<span style="background-color: #E1F5FE; color: #0277BD; padding: 8px 15px; border-radius: 20px; font-weight: bold; margin-right: 10px; display: inline-block; margin-bottom: 10px;">β¨ Outstanding Models Contributor (#{models_rank})</span>'
|
1107 |
+
|
1108 |
+
badge_html += '</div>'
|
1109 |
+
|
1110 |
+
# Add achievement badges
|
1111 |
+
if spaces_rank or models_rank:
|
1112 |
+
st.markdown(badge_html, unsafe_allow_html=True)
|
1113 |
+
|
1114 |
+
st.markdown('</ul></div></div>', unsafe_allow_html=True)
|
1115 |
+
|
1116 |
+
# Detailed category analysis section
|
1117 |
+
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">Detailed Category Analysis</h2>', unsafe_allow_html=True)
|
1118 |
+
|
1119 |
+
# Create category cards in columns
|
1120 |
+
cols = st.columns(len(types_to_fetch)) if types_to_fetch else st.columns(1)
|
1121 |
+
|
1122 |
+
category_icons = {
|
1123 |
+
"model": "π§ ",
|
1124 |
+
"dataset": "π¦",
|
1125 |
+
"space": "π"
|
1126 |
+
}
|
1127 |
+
|
1128 |
+
category_colors = {
|
1129 |
+
"model": "#FF9800",
|
1130 |
+
"dataset": "#2196F3",
|
1131 |
+
"space": "#4CAF50"
|
1132 |
+
}
|
1133 |
+
|
1134 |
+
for i, kind in enumerate(types_to_fetch):
|
1135 |
+
with cols[i]:
|
1136 |
+
try:
|
1137 |
+
emoji = category_icons.get(kind, "π")
|
1138 |
+
label = kind.capitalize() + "s"
|
1139 |
+
color = category_colors.get(kind, "#1E88E5")
|
1140 |
+
|
1141 |
+
total = len(cached_list_items(username, kind))
|
1142 |
+
commits = commits_by_type.get(kind, [])
|
1143 |
+
commit_count = commit_counts_by_type.get(kind, 0)
|
1144 |
+
|
1145 |
+
# Create styled card header
|
1146 |
+
st.markdown(f'<div style="background-color: white; padding: 20px; border-radius: 10px; box-shadow: 0 2px 10px rgba(0,0,0,0.1); border-top: 5px solid {color};">'
|
1147 |
+
f'<h3 style="color: {color}; text-align: center;">{emoji} {label}</h3>'
|
1148 |
+
f'<div style="display: flex; justify-content: space-between; margin: 15px 0;">'
|
1149 |
+
f'<span style="font-weight: bold;">Total:</span><span>{total}</span></div>'
|
1150 |
+
f'<div style="display: flex; justify-content: space-between; margin-bottom: 15px;">'
|
1151 |
+
f'<span style="font-weight: bold;">Commits:</span><span>{commit_count}</span></div>'
|
1152 |
+
f'</div>', unsafe_allow_html=True)
|
1153 |
+
|
1154 |
+
# Create calendar for this type
|
1155 |
+
df_kind = pd.DataFrame(commits, columns=["date"])
|
1156 |
+
if not df_kind.empty:
|
1157 |
+
df_kind = df_kind.drop_duplicates() # Remove any duplicate dates
|
1158 |
+
make_calendar_heatmap(df_kind, f"{label} Commits", selected_year)
|
1159 |
+
else:
|
1160 |
+
st.info(f"No {label.lower()} activity in {selected_year}")
|
1161 |
+
|
1162 |
+
except Exception as e:
|
1163 |
+
st.warning(f"Error processing {kind.capitalize()}s: {str(e)}")
|
1164 |
+
# Show empty placeholder
|
1165 |
+
st.markdown(f'<div style="background-color: white; padding: 20px; border-radius: 10px; box-shadow: 0 2px 10px rgba(0,0,0,0.1); border-top: 5px solid #9E9E9E; text-align: center;">'
|
1166 |
+
f'<h3 style="color: #9E9E9E;">β οΈ Error</h3>'
|
1167 |
+
f'<p>Could not load {kind.capitalize()}s data</p>'
|
1168 |
+
f'</div>', unsafe_allow_html=True)
|
1169 |
+
|
1170 |
+
# Footer
|
1171 |
+
st.markdown('<hr style="margin: 3rem 0 1rem 0;">', unsafe_allow_html=True)
|
1172 |
+
st.markdown('<p style="text-align: center; color: #9E9E9E; font-size: 0.8rem;">Hugging Face Contributions Dashboard | Data fetched from Hugging Face API</p>', unsafe_allow_html=True)
|
1173 |
+
else:
|
1174 |
+
# If no username is selected, show welcome screen
|
1175 |
+
st.markdown(f'<div style="text-align: center; margin: 50px 0;">'
|
1176 |
+
f'<img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="width: 200px; margin-bottom: 30px;">'
|
1177 |
+
f'<h2>Welcome to Hugging Face Contributions Dashboard</h2>'
|
1178 |
+
f'<p style="font-size: 1.2rem;">Please select a contributor from the sidebar to view their activity.</p>'
|
1179 |
+
f'</div>', unsafe_allow_html=True)
|