Spaces:
Runtime error
Runtime error
| import os | |
| import json | |
| from .env import AttrDict | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| import torch.nn as nn | |
| from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d | |
| from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm | |
| from .utils import init_weights, get_padding | |
| LRELU_SLOPE = 0.1 | |
| def load_model(model_path, device='cuda'): | |
| config_file = os.path.join(os.path.split(model_path)[0], 'config.json') | |
| with open(config_file) as f: | |
| data = f.read() | |
| global h | |
| json_config = json.loads(data) | |
| h = AttrDict(json_config) | |
| generator = Generator(h).to(device) | |
| cp_dict = torch.load(model_path) | |
| generator.load_state_dict(cp_dict['generator']) | |
| generator.eval() | |
| generator.remove_weight_norm() | |
| del cp_dict | |
| return generator, h | |
| class ResBlock1(torch.nn.Module): | |
| def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)): | |
| super(ResBlock1, self).__init__() | |
| self.h = h | |
| self.convs1 = nn.ModuleList([ | |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], | |
| padding=get_padding(kernel_size, dilation[0]))), | |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], | |
| padding=get_padding(kernel_size, dilation[1]))), | |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], | |
| padding=get_padding(kernel_size, dilation[2]))) | |
| ]) | |
| self.convs1.apply(init_weights) | |
| self.convs2 = nn.ModuleList([ | |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | |
| padding=get_padding(kernel_size, 1))), | |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | |
| padding=get_padding(kernel_size, 1))), | |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | |
| padding=get_padding(kernel_size, 1))) | |
| ]) | |
| self.convs2.apply(init_weights) | |
| def forward(self, x): | |
| for c1, c2 in zip(self.convs1, self.convs2): | |
| xt = F.leaky_relu(x, LRELU_SLOPE) | |
| xt = c1(xt) | |
| xt = F.leaky_relu(xt, LRELU_SLOPE) | |
| xt = c2(xt) | |
| x = xt + x | |
| return x | |
| def remove_weight_norm(self): | |
| for l in self.convs1: | |
| remove_weight_norm(l) | |
| for l in self.convs2: | |
| remove_weight_norm(l) | |
| class ResBlock2(torch.nn.Module): | |
| def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)): | |
| super(ResBlock2, self).__init__() | |
| self.h = h | |
| self.convs = nn.ModuleList([ | |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], | |
| padding=get_padding(kernel_size, dilation[0]))), | |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], | |
| padding=get_padding(kernel_size, dilation[1]))) | |
| ]) | |
| self.convs.apply(init_weights) | |
| def forward(self, x): | |
| for c in self.convs: | |
| xt = F.leaky_relu(x, LRELU_SLOPE) | |
| xt = c(xt) | |
| x = xt + x | |
| return x | |
| def remove_weight_norm(self): | |
| for l in self.convs: | |
| remove_weight_norm(l) | |
| def padDiff(x): | |
| return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0) | |
| class SineGen(torch.nn.Module): | |
| """ Definition of sine generator | |
| SineGen(samp_rate, harmonic_num = 0, | |
| sine_amp = 0.1, noise_std = 0.003, | |
| voiced_threshold = 0, | |
| flag_for_pulse=False) | |
| samp_rate: sampling rate in Hz | |
| harmonic_num: number of harmonic overtones (default 0) | |
| sine_amp: amplitude of sine-wavefrom (default 0.1) | |
| noise_std: std of Gaussian noise (default 0.003) | |
| voiced_thoreshold: F0 threshold for U/V classification (default 0) | |
| flag_for_pulse: this SinGen is used inside PulseGen (default False) | |
| Note: when flag_for_pulse is True, the first time step of a voiced | |
| segment is always sin(np.pi) or cos(0) | |
| """ | |
| def __init__(self, samp_rate, harmonic_num=0, | |
| sine_amp=0.1, noise_std=0.003, | |
| voiced_threshold=0, | |
| flag_for_pulse=False): | |
| super(SineGen, self).__init__() | |
| self.sine_amp = sine_amp | |
| self.noise_std = noise_std | |
| self.harmonic_num = harmonic_num | |
| self.dim = self.harmonic_num + 1 | |
| self.sampling_rate = samp_rate | |
| self.voiced_threshold = voiced_threshold | |
| self.flag_for_pulse = flag_for_pulse | |
| def _f02uv(self, f0): | |
| # generate uv signal | |
| uv = (f0 > self.voiced_threshold).type(torch.float32) | |
| return uv | |
| def _f02sine(self, f0_values): | |
| """ f0_values: (batchsize, length, dim) | |
| where dim indicates fundamental tone and overtones | |
| """ | |
| # convert to F0 in rad. The interger part n can be ignored | |
| # because 2 * np.pi * n doesn't affect phase | |
| rad_values = (f0_values / self.sampling_rate) % 1 | |
| # initial phase noise (no noise for fundamental component) | |
| rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \ | |
| device=f0_values.device) | |
| rand_ini[:, 0] = 0 | |
| rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini | |
| # instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad) | |
| if not self.flag_for_pulse: | |
| # for normal case | |
| # To prevent torch.cumsum numerical overflow, | |
| # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1. | |
| # Buffer tmp_over_one_idx indicates the time step to add -1. | |
| # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi | |
| tmp_over_one = torch.cumsum(rad_values, 1) % 1 | |
| tmp_over_one_idx = (padDiff(tmp_over_one)) < 0 | |
| cumsum_shift = torch.zeros_like(rad_values) | |
| cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0 | |
| sines = torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1) | |
| * 2 * np.pi) | |
| else: | |
| # If necessary, make sure that the first time step of every | |
| # voiced segments is sin(pi) or cos(0) | |
| # This is used for pulse-train generation | |
| # identify the last time step in unvoiced segments | |
| uv = self._f02uv(f0_values) | |
| uv_1 = torch.roll(uv, shifts=-1, dims=1) | |
| uv_1[:, -1, :] = 1 | |
| u_loc = (uv < 1) * (uv_1 > 0) | |
| # get the instantanouse phase | |
| tmp_cumsum = torch.cumsum(rad_values, dim=1) | |
| # different batch needs to be processed differently | |
| for idx in range(f0_values.shape[0]): | |
| temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :] | |
| temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :] | |
| # stores the accumulation of i.phase within | |
| # each voiced segments | |
| tmp_cumsum[idx, :, :] = 0 | |
| tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum | |
| # rad_values - tmp_cumsum: remove the accumulation of i.phase | |
| # within the previous voiced segment. | |
| i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1) | |
| # get the sines | |
| sines = torch.cos(i_phase * 2 * np.pi) | |
| return sines | |
| def forward(self, f0): | |
| """ sine_tensor, uv = forward(f0) | |
| input F0: tensor(batchsize=1, length, dim=1) | |
| f0 for unvoiced steps should be 0 | |
| output sine_tensor: tensor(batchsize=1, length, dim) | |
| output uv: tensor(batchsize=1, length, 1) | |
| """ | |
| with torch.no_grad(): | |
| f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, | |
| device=f0.device) | |
| # fundamental component | |
| fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device)) | |
| # generate sine waveforms | |
| sine_waves = self._f02sine(fn) * self.sine_amp | |
| # generate uv signal | |
| # uv = torch.ones(f0.shape) | |
| # uv = uv * (f0 > self.voiced_threshold) | |
| uv = self._f02uv(f0) | |
| # noise: for unvoiced should be similar to sine_amp | |
| # std = self.sine_amp/3 -> max value ~ self.sine_amp | |
| # . for voiced regions is self.noise_std | |
| noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3 | |
| noise = noise_amp * torch.randn_like(sine_waves) | |
| # first: set the unvoiced part to 0 by uv | |
| # then: additive noise | |
| sine_waves = sine_waves * uv + noise | |
| return sine_waves, uv, noise | |
| class SourceModuleHnNSF(torch.nn.Module): | |
| """ SourceModule for hn-nsf | |
| SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1, | |
| add_noise_std=0.003, voiced_threshod=0) | |
| sampling_rate: sampling_rate in Hz | |
| harmonic_num: number of harmonic above F0 (default: 0) | |
| sine_amp: amplitude of sine source signal (default: 0.1) | |
| add_noise_std: std of additive Gaussian noise (default: 0.003) | |
| note that amplitude of noise in unvoiced is decided | |
| by sine_amp | |
| voiced_threshold: threhold to set U/V given F0 (default: 0) | |
| Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) | |
| F0_sampled (batchsize, length, 1) | |
| Sine_source (batchsize, length, 1) | |
| noise_source (batchsize, length 1) | |
| uv (batchsize, length, 1) | |
| """ | |
| def __init__(self, sampling_rate, harmonic_num=0, sine_amp=0.1, | |
| add_noise_std=0.003, voiced_threshod=0): | |
| super(SourceModuleHnNSF, self).__init__() | |
| self.sine_amp = sine_amp | |
| self.noise_std = add_noise_std | |
| # to produce sine waveforms | |
| self.l_sin_gen = SineGen(sampling_rate, harmonic_num, | |
| sine_amp, add_noise_std, voiced_threshod) | |
| # to merge source harmonics into a single excitation | |
| self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) | |
| self.l_tanh = torch.nn.Tanh() | |
| def forward(self, x): | |
| """ | |
| Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) | |
| F0_sampled (batchsize, length, 1) | |
| Sine_source (batchsize, length, 1) | |
| noise_source (batchsize, length 1) | |
| """ | |
| # source for harmonic branch | |
| sine_wavs, uv, _ = self.l_sin_gen(x) | |
| sine_merge = self.l_tanh(self.l_linear(sine_wavs)) | |
| # source for noise branch, in the same shape as uv | |
| noise = torch.randn_like(uv) * self.sine_amp / 3 | |
| return sine_merge, noise, uv | |
| class Generator(torch.nn.Module): | |
| def __init__(self, h): | |
| super(Generator, self).__init__() | |
| self.h = h | |
| self.num_kernels = len(h["resblock_kernel_sizes"]) | |
| self.num_upsamples = len(h["upsample_rates"]) | |
| self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(h["upsample_rates"])) | |
| self.m_source = SourceModuleHnNSF( | |
| sampling_rate=h["sampling_rate"], | |
| harmonic_num=8) | |
| self.noise_convs = nn.ModuleList() | |
| self.conv_pre = weight_norm(Conv1d(h["inter_channels"], h["upsample_initial_channel"], 7, 1, padding=3)) | |
| resblock = ResBlock1 if h["resblock"] == '1' else ResBlock2 | |
| self.ups = nn.ModuleList() | |
| for i, (u, k) in enumerate(zip(h["upsample_rates"], h["upsample_kernel_sizes"])): | |
| c_cur = h["upsample_initial_channel"] // (2 ** (i + 1)) | |
| self.ups.append(weight_norm( | |
| ConvTranspose1d(h["upsample_initial_channel"] // (2 ** i), h["upsample_initial_channel"] // (2 ** (i + 1)), | |
| k, u, padding=(k - u) // 2))) | |
| if i + 1 < len(h["upsample_rates"]): # | |
| stride_f0 = np.prod(h["upsample_rates"][i + 1:]) | |
| self.noise_convs.append(Conv1d( | |
| 1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=stride_f0 // 2)) | |
| else: | |
| self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1)) | |
| self.resblocks = nn.ModuleList() | |
| for i in range(len(self.ups)): | |
| ch = h["upsample_initial_channel"] // (2 ** (i + 1)) | |
| for j, (k, d) in enumerate(zip(h["resblock_kernel_sizes"], h["resblock_dilation_sizes"])): | |
| self.resblocks.append(resblock(h, ch, k, d)) | |
| self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3)) | |
| self.ups.apply(init_weights) | |
| self.conv_post.apply(init_weights) | |
| self.cond = nn.Conv1d(h['gin_channels'], h['upsample_initial_channel'], 1) | |
| def forward(self, x, f0, g=None): | |
| # print(1,x.shape,f0.shape,f0[:, None].shape) | |
| f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t | |
| # print(2,f0.shape) | |
| har_source, noi_source, uv = self.m_source(f0) | |
| har_source = har_source.transpose(1, 2) | |
| x = self.conv_pre(x) | |
| x = x + self.cond(g) | |
| # print(124,x.shape,har_source.shape) | |
| for i in range(self.num_upsamples): | |
| x = F.leaky_relu(x, LRELU_SLOPE) | |
| # print(3,x.shape) | |
| x = self.ups[i](x) | |
| x_source = self.noise_convs[i](har_source) | |
| # print(4,x_source.shape,har_source.shape,x.shape) | |
| x = x + x_source | |
| xs = None | |
| for j in range(self.num_kernels): | |
| if xs is None: | |
| xs = self.resblocks[i * self.num_kernels + j](x) | |
| else: | |
| xs += self.resblocks[i * self.num_kernels + j](x) | |
| x = xs / self.num_kernels | |
| x = F.leaky_relu(x) | |
| x = self.conv_post(x) | |
| x = torch.tanh(x) | |
| return x | |
| def remove_weight_norm(self): | |
| print('Removing weight norm...') | |
| for l in self.ups: | |
| remove_weight_norm(l) | |
| for l in self.resblocks: | |
| l.remove_weight_norm() | |
| remove_weight_norm(self.conv_pre) | |
| remove_weight_norm(self.conv_post) | |
| class DiscriminatorP(torch.nn.Module): | |
| def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): | |
| super(DiscriminatorP, self).__init__() | |
| self.period = period | |
| norm_f = weight_norm if use_spectral_norm == False else spectral_norm | |
| self.convs = nn.ModuleList([ | |
| norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | |
| norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | |
| norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | |
| norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | |
| norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))), | |
| ]) | |
| self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) | |
| def forward(self, x): | |
| fmap = [] | |
| # 1d to 2d | |
| b, c, t = x.shape | |
| if t % self.period != 0: # pad first | |
| n_pad = self.period - (t % self.period) | |
| x = F.pad(x, (0, n_pad), "reflect") | |
| t = t + n_pad | |
| x = x.view(b, c, t // self.period, self.period) | |
| for l in self.convs: | |
| x = l(x) | |
| x = F.leaky_relu(x, LRELU_SLOPE) | |
| fmap.append(x) | |
| x = self.conv_post(x) | |
| fmap.append(x) | |
| x = torch.flatten(x, 1, -1) | |
| return x, fmap | |
| class MultiPeriodDiscriminator(torch.nn.Module): | |
| def __init__(self, periods=None): | |
| super(MultiPeriodDiscriminator, self).__init__() | |
| self.periods = periods if periods is not None else [2, 3, 5, 7, 11] | |
| self.discriminators = nn.ModuleList() | |
| for period in self.periods: | |
| self.discriminators.append(DiscriminatorP(period)) | |
| def forward(self, y, y_hat): | |
| y_d_rs = [] | |
| y_d_gs = [] | |
| fmap_rs = [] | |
| fmap_gs = [] | |
| for i, d in enumerate(self.discriminators): | |
| y_d_r, fmap_r = d(y) | |
| y_d_g, fmap_g = d(y_hat) | |
| y_d_rs.append(y_d_r) | |
| fmap_rs.append(fmap_r) | |
| y_d_gs.append(y_d_g) | |
| fmap_gs.append(fmap_g) | |
| return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
| class DiscriminatorS(torch.nn.Module): | |
| def __init__(self, use_spectral_norm=False): | |
| super(DiscriminatorS, self).__init__() | |
| norm_f = weight_norm if use_spectral_norm == False else spectral_norm | |
| self.convs = nn.ModuleList([ | |
| norm_f(Conv1d(1, 128, 15, 1, padding=7)), | |
| norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)), | |
| norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)), | |
| norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)), | |
| norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)), | |
| norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)), | |
| norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), | |
| ]) | |
| self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) | |
| def forward(self, x): | |
| fmap = [] | |
| for l in self.convs: | |
| x = l(x) | |
| x = F.leaky_relu(x, LRELU_SLOPE) | |
| fmap.append(x) | |
| x = self.conv_post(x) | |
| fmap.append(x) | |
| x = torch.flatten(x, 1, -1) | |
| return x, fmap | |
| class MultiScaleDiscriminator(torch.nn.Module): | |
| def __init__(self): | |
| super(MultiScaleDiscriminator, self).__init__() | |
| self.discriminators = nn.ModuleList([ | |
| DiscriminatorS(use_spectral_norm=True), | |
| DiscriminatorS(), | |
| DiscriminatorS(), | |
| ]) | |
| self.meanpools = nn.ModuleList([ | |
| AvgPool1d(4, 2, padding=2), | |
| AvgPool1d(4, 2, padding=2) | |
| ]) | |
| def forward(self, y, y_hat): | |
| y_d_rs = [] | |
| y_d_gs = [] | |
| fmap_rs = [] | |
| fmap_gs = [] | |
| for i, d in enumerate(self.discriminators): | |
| if i != 0: | |
| y = self.meanpools[i - 1](y) | |
| y_hat = self.meanpools[i - 1](y_hat) | |
| y_d_r, fmap_r = d(y) | |
| y_d_g, fmap_g = d(y_hat) | |
| y_d_rs.append(y_d_r) | |
| fmap_rs.append(fmap_r) | |
| y_d_gs.append(y_d_g) | |
| fmap_gs.append(fmap_g) | |
| return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
| def feature_loss(fmap_r, fmap_g): | |
| loss = 0 | |
| for dr, dg in zip(fmap_r, fmap_g): | |
| for rl, gl in zip(dr, dg): | |
| loss += torch.mean(torch.abs(rl - gl)) | |
| return loss * 2 | |
| def discriminator_loss(disc_real_outputs, disc_generated_outputs): | |
| loss = 0 | |
| r_losses = [] | |
| g_losses = [] | |
| for dr, dg in zip(disc_real_outputs, disc_generated_outputs): | |
| r_loss = torch.mean((1 - dr) ** 2) | |
| g_loss = torch.mean(dg ** 2) | |
| loss += (r_loss + g_loss) | |
| r_losses.append(r_loss.item()) | |
| g_losses.append(g_loss.item()) | |
| return loss, r_losses, g_losses | |
| def generator_loss(disc_outputs): | |
| loss = 0 | |
| gen_losses = [] | |
| for dg in disc_outputs: | |
| l = torch.mean((1 - dg) ** 2) | |
| gen_losses.append(l) | |
| loss += l | |
| return loss, gen_losses | |