Spaces:
Runtime error
Runtime error
| import os | |
| import glob | |
| import re | |
| import sys | |
| import argparse | |
| import logging | |
| import json | |
| import subprocess | |
| import random | |
| import librosa | |
| import numpy as np | |
| from scipy.io.wavfile import read | |
| import torch | |
| from torch.nn import functional as F | |
| from modules.commons import sequence_mask | |
| from hubert import hubert_model | |
| MATPLOTLIB_FLAG = False | |
| logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) | |
| logger = logging | |
| f0_bin = 256 | |
| f0_max = 1100.0 | |
| f0_min = 50.0 | |
| f0_mel_min = 1127 * np.log(1 + f0_min / 700) | |
| f0_mel_max = 1127 * np.log(1 + f0_max / 700) | |
| # def normalize_f0(f0, random_scale=True): | |
| # f0_norm = f0.clone() # create a copy of the input Tensor | |
| # batch_size, _, frame_length = f0_norm.shape | |
| # for i in range(batch_size): | |
| # means = torch.mean(f0_norm[i, 0, :]) | |
| # if random_scale: | |
| # factor = random.uniform(0.8, 1.2) | |
| # else: | |
| # factor = 1 | |
| # f0_norm[i, 0, :] = (f0_norm[i, 0, :] - means) * factor | |
| # return f0_norm | |
| # def normalize_f0(f0, random_scale=True): | |
| # means = torch.mean(f0[:, 0, :], dim=1, keepdim=True) | |
| # if random_scale: | |
| # factor = torch.Tensor(f0.shape[0],1).uniform_(0.8, 1.2).to(f0.device) | |
| # else: | |
| # factor = torch.ones(f0.shape[0], 1, 1).to(f0.device) | |
| # f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1) | |
| # return f0_norm | |
| def normalize_f0(f0, x_mask, uv, random_scale=True): | |
| # calculate means based on x_mask | |
| uv_sum = torch.sum(uv, dim=1, keepdim=True) | |
| uv_sum[uv_sum == 0] = 9999 | |
| means = torch.sum(f0[:, 0, :] * uv, dim=1, keepdim=True) / uv_sum | |
| if random_scale: | |
| factor = torch.Tensor(f0.shape[0], 1).uniform_(0.8, 1.2).to(f0.device) | |
| else: | |
| factor = torch.ones(f0.shape[0], 1).to(f0.device) | |
| # normalize f0 based on means and factor | |
| f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1) | |
| if torch.isnan(f0_norm).any(): | |
| exit(0) | |
| return f0_norm * x_mask | |
| def plot_data_to_numpy(x, y): | |
| global MATPLOTLIB_FLAG | |
| if not MATPLOTLIB_FLAG: | |
| import matplotlib | |
| matplotlib.use("Agg") | |
| MATPLOTLIB_FLAG = True | |
| mpl_logger = logging.getLogger('matplotlib') | |
| mpl_logger.setLevel(logging.WARNING) | |
| import matplotlib.pylab as plt | |
| import numpy as np | |
| fig, ax = plt.subplots(figsize=(10, 2)) | |
| plt.plot(x) | |
| plt.plot(y) | |
| plt.tight_layout() | |
| fig.canvas.draw() | |
| data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') | |
| data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) | |
| plt.close() | |
| return data | |
| def interpolate_f0(f0): | |
| ''' | |
| 对F0进行插值处理 | |
| ''' | |
| data = np.reshape(f0, (f0.size, 1)) | |
| vuv_vector = np.zeros((data.size, 1), dtype=np.float32) | |
| vuv_vector[data > 0.0] = 1.0 | |
| vuv_vector[data <= 0.0] = 0.0 | |
| ip_data = data | |
| frame_number = data.size | |
| last_value = 0.0 | |
| for i in range(frame_number): | |
| if data[i] <= 0.0: | |
| j = i + 1 | |
| for j in range(i + 1, frame_number): | |
| if data[j] > 0.0: | |
| break | |
| if j < frame_number - 1: | |
| if last_value > 0.0: | |
| step = (data[j] - data[i - 1]) / float(j - i) | |
| for k in range(i, j): | |
| ip_data[k] = data[i - 1] + step * (k - i + 1) | |
| else: | |
| for k in range(i, j): | |
| ip_data[k] = data[j] | |
| else: | |
| for k in range(i, frame_number): | |
| ip_data[k] = last_value | |
| else: | |
| ip_data[i] = data[i] | |
| last_value = data[i] | |
| return ip_data[:,0], vuv_vector[:,0] | |
| def compute_f0_parselmouth(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512): | |
| import parselmouth | |
| x = wav_numpy | |
| if p_len is None: | |
| p_len = x.shape[0]//hop_length | |
| else: | |
| assert abs(p_len-x.shape[0]//hop_length) < 4, "pad length error" | |
| time_step = hop_length / sampling_rate * 1000 | |
| f0_min = 50 | |
| f0_max = 1100 | |
| f0 = parselmouth.Sound(x, sampling_rate).to_pitch_ac( | |
| time_step=time_step / 1000, voicing_threshold=0.6, | |
| pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency'] | |
| pad_size=(p_len - len(f0) + 1) // 2 | |
| if(pad_size>0 or p_len - len(f0) - pad_size>0): | |
| f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant') | |
| return f0 | |
| def resize_f0(x, target_len): | |
| source = np.array(x) | |
| source[source<0.001] = np.nan | |
| target = np.interp(np.arange(0, len(source)*target_len, len(source))/ target_len, np.arange(0, len(source)), source) | |
| res = np.nan_to_num(target) | |
| return res | |
| def compute_f0_dio(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512): | |
| import pyworld | |
| if p_len is None: | |
| p_len = wav_numpy.shape[0]//hop_length | |
| f0, t = pyworld.dio( | |
| wav_numpy.astype(np.double), | |
| fs=sampling_rate, | |
| f0_ceil=800, | |
| frame_period=1000 * hop_length / sampling_rate, | |
| ) | |
| f0 = pyworld.stonemask(wav_numpy.astype(np.double), f0, t, sampling_rate) | |
| for index, pitch in enumerate(f0): | |
| f0[index] = round(pitch, 1) | |
| return resize_f0(f0, p_len) | |
| def f0_to_coarse(f0): | |
| is_torch = isinstance(f0, torch.Tensor) | |
| f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * np.log(1 + f0 / 700) | |
| f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1 | |
| f0_mel[f0_mel <= 1] = 1 | |
| f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1 | |
| f0_coarse = (f0_mel + 0.5).long() if is_torch else np.rint(f0_mel).astype(np.int) | |
| assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (f0_coarse.max(), f0_coarse.min()) | |
| return f0_coarse | |
| def get_hubert_model(): | |
| vec_path = "hubert/checkpoint_best_legacy_500.pt" | |
| print("load model(s) from {}".format(vec_path)) | |
| from fairseq import checkpoint_utils | |
| models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task( | |
| [vec_path], | |
| suffix="", | |
| ) | |
| model = models[0] | |
| model.eval() | |
| return model | |
| def get_hubert_content(hmodel, wav_16k_tensor): | |
| feats = wav_16k_tensor | |
| if feats.dim() == 2: # double channels | |
| feats = feats.mean(-1) | |
| assert feats.dim() == 1, feats.dim() | |
| feats = feats.view(1, -1) | |
| padding_mask = torch.BoolTensor(feats.shape).fill_(False) | |
| inputs = { | |
| "source": feats.to(wav_16k_tensor.device), | |
| "padding_mask": padding_mask.to(wav_16k_tensor.device), | |
| "output_layer": 9, # layer 9 | |
| } | |
| with torch.no_grad(): | |
| logits = hmodel.extract_features(**inputs) | |
| feats = hmodel.final_proj(logits[0]) | |
| return feats.transpose(1, 2) | |
| def get_content(cmodel, y): | |
| with torch.no_grad(): | |
| c = cmodel.extract_features(y.squeeze(1))[0] | |
| c = c.transpose(1, 2) | |
| return c | |
| def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False): | |
| assert os.path.isfile(checkpoint_path) | |
| checkpoint_dict = torch.load(checkpoint_path, map_location='cpu') | |
| iteration = checkpoint_dict['iteration'] | |
| learning_rate = checkpoint_dict['learning_rate'] | |
| if optimizer is not None and not skip_optimizer and checkpoint_dict['optimizer'] is not None: | |
| optimizer.load_state_dict(checkpoint_dict['optimizer']) | |
| saved_state_dict = checkpoint_dict['model'] | |
| if hasattr(model, 'module'): | |
| state_dict = model.module.state_dict() | |
| else: | |
| state_dict = model.state_dict() | |
| new_state_dict = {} | |
| for k, v in state_dict.items(): | |
| try: | |
| # assert "dec" in k or "disc" in k | |
| # print("load", k) | |
| new_state_dict[k] = saved_state_dict[k] | |
| assert saved_state_dict[k].shape == v.shape, (saved_state_dict[k].shape, v.shape) | |
| except: | |
| print("error, %s is not in the checkpoint" % k) | |
| logger.info("%s is not in the checkpoint" % k) | |
| new_state_dict[k] = v | |
| if hasattr(model, 'module'): | |
| model.module.load_state_dict(new_state_dict) | |
| else: | |
| model.load_state_dict(new_state_dict) | |
| print("load ") | |
| logger.info("Loaded checkpoint '{}' (iteration {})".format( | |
| checkpoint_path, iteration)) | |
| return model, optimizer, learning_rate, iteration | |
| def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path): | |
| logger.info("Saving model and optimizer state at iteration {} to {}".format( | |
| iteration, checkpoint_path)) | |
| if hasattr(model, 'module'): | |
| state_dict = model.module.state_dict() | |
| else: | |
| state_dict = model.state_dict() | |
| torch.save({'model': state_dict, | |
| 'iteration': iteration, | |
| 'optimizer': optimizer.state_dict(), | |
| 'learning_rate': learning_rate}, checkpoint_path) | |
| def clean_checkpoints(path_to_models='logs/44k/', n_ckpts_to_keep=2, sort_by_time=True): | |
| """Freeing up space by deleting saved ckpts | |
| Arguments: | |
| path_to_models -- Path to the model directory | |
| n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth | |
| sort_by_time -- True -> chronologically delete ckpts | |
| False -> lexicographically delete ckpts | |
| """ | |
| ckpts_files = [f for f in os.listdir(path_to_models) if os.path.isfile(os.path.join(path_to_models, f))] | |
| name_key = (lambda _f: int(re.compile('._(\d+)\.pth').match(_f).group(1))) | |
| time_key = (lambda _f: os.path.getmtime(os.path.join(path_to_models, _f))) | |
| sort_key = time_key if sort_by_time else name_key | |
| x_sorted = lambda _x: sorted([f for f in ckpts_files if f.startswith(_x) and not f.endswith('_0.pth')], key=sort_key) | |
| to_del = [os.path.join(path_to_models, fn) for fn in | |
| (x_sorted('G')[:-n_ckpts_to_keep] + x_sorted('D')[:-n_ckpts_to_keep])] | |
| del_info = lambda fn: logger.info(f".. Free up space by deleting ckpt {fn}") | |
| del_routine = lambda x: [os.remove(x), del_info(x)] | |
| rs = [del_routine(fn) for fn in to_del] | |
| def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050): | |
| for k, v in scalars.items(): | |
| writer.add_scalar(k, v, global_step) | |
| for k, v in histograms.items(): | |
| writer.add_histogram(k, v, global_step) | |
| for k, v in images.items(): | |
| writer.add_image(k, v, global_step, dataformats='HWC') | |
| for k, v in audios.items(): | |
| writer.add_audio(k, v, global_step, audio_sampling_rate) | |
| def latest_checkpoint_path(dir_path, regex="G_*.pth"): | |
| f_list = glob.glob(os.path.join(dir_path, regex)) | |
| f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f)))) | |
| x = f_list[-1] | |
| print(x) | |
| return x | |
| def plot_spectrogram_to_numpy(spectrogram): | |
| global MATPLOTLIB_FLAG | |
| if not MATPLOTLIB_FLAG: | |
| import matplotlib | |
| matplotlib.use("Agg") | |
| MATPLOTLIB_FLAG = True | |
| mpl_logger = logging.getLogger('matplotlib') | |
| mpl_logger.setLevel(logging.WARNING) | |
| import matplotlib.pylab as plt | |
| import numpy as np | |
| fig, ax = plt.subplots(figsize=(10,2)) | |
| im = ax.imshow(spectrogram, aspect="auto", origin="lower", | |
| interpolation='none') | |
| plt.colorbar(im, ax=ax) | |
| plt.xlabel("Frames") | |
| plt.ylabel("Channels") | |
| plt.tight_layout() | |
| fig.canvas.draw() | |
| data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') | |
| data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) | |
| plt.close() | |
| return data | |
| def plot_alignment_to_numpy(alignment, info=None): | |
| global MATPLOTLIB_FLAG | |
| if not MATPLOTLIB_FLAG: | |
| import matplotlib | |
| matplotlib.use("Agg") | |
| MATPLOTLIB_FLAG = True | |
| mpl_logger = logging.getLogger('matplotlib') | |
| mpl_logger.setLevel(logging.WARNING) | |
| import matplotlib.pylab as plt | |
| import numpy as np | |
| fig, ax = plt.subplots(figsize=(6, 4)) | |
| im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower', | |
| interpolation='none') | |
| fig.colorbar(im, ax=ax) | |
| xlabel = 'Decoder timestep' | |
| if info is not None: | |
| xlabel += '\n\n' + info | |
| plt.xlabel(xlabel) | |
| plt.ylabel('Encoder timestep') | |
| plt.tight_layout() | |
| fig.canvas.draw() | |
| data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') | |
| data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) | |
| plt.close() | |
| return data | |
| def load_wav_to_torch(full_path): | |
| sampling_rate, data = read(full_path) | |
| return torch.FloatTensor(data.astype(np.float32)), sampling_rate | |
| def load_filepaths_and_text(filename, split="|"): | |
| with open(filename, encoding='utf-8') as f: | |
| filepaths_and_text = [line.strip().split(split) for line in f] | |
| return filepaths_and_text | |
| def get_hparams(init=True): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('-c', '--config', type=str, default="./configs/base.json", | |
| help='JSON file for configuration') | |
| parser.add_argument('-m', '--model', type=str, required=True, | |
| help='Model name') | |
| args = parser.parse_args() | |
| model_dir = os.path.join("./logs", args.model) | |
| if not os.path.exists(model_dir): | |
| os.makedirs(model_dir) | |
| config_path = args.config | |
| config_save_path = os.path.join(model_dir, "config.json") | |
| if init: | |
| with open(config_path, "r") as f: | |
| data = f.read() | |
| with open(config_save_path, "w") as f: | |
| f.write(data) | |
| else: | |
| with open(config_save_path, "r") as f: | |
| data = f.read() | |
| config = json.loads(data) | |
| hparams = HParams(**config) | |
| hparams.model_dir = model_dir | |
| return hparams | |
| def get_hparams_from_dir(model_dir): | |
| config_save_path = os.path.join(model_dir, "config.json") | |
| with open(config_save_path, "r") as f: | |
| data = f.read() | |
| config = json.loads(data) | |
| hparams =HParams(**config) | |
| hparams.model_dir = model_dir | |
| return hparams | |
| def get_hparams_from_file(config_path): | |
| with open(config_path, "r") as f: | |
| data = f.read() | |
| config = json.loads(data) | |
| hparams =HParams(**config) | |
| return hparams | |
| def check_git_hash(model_dir): | |
| source_dir = os.path.dirname(os.path.realpath(__file__)) | |
| if not os.path.exists(os.path.join(source_dir, ".git")): | |
| logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format( | |
| source_dir | |
| )) | |
| return | |
| cur_hash = subprocess.getoutput("git rev-parse HEAD") | |
| path = os.path.join(model_dir, "githash") | |
| if os.path.exists(path): | |
| saved_hash = open(path).read() | |
| if saved_hash != cur_hash: | |
| logger.warn("git hash values are different. {}(saved) != {}(current)".format( | |
| saved_hash[:8], cur_hash[:8])) | |
| else: | |
| open(path, "w").write(cur_hash) | |
| def get_logger(model_dir, filename="train.log"): | |
| global logger | |
| logger = logging.getLogger(os.path.basename(model_dir)) | |
| logger.setLevel(logging.DEBUG) | |
| formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s") | |
| if not os.path.exists(model_dir): | |
| os.makedirs(model_dir) | |
| h = logging.FileHandler(os.path.join(model_dir, filename)) | |
| h.setLevel(logging.DEBUG) | |
| h.setFormatter(formatter) | |
| logger.addHandler(h) | |
| return logger | |
| def repeat_expand_2d(content, target_len): | |
| # content : [h, t] | |
| src_len = content.shape[-1] | |
| target = torch.zeros([content.shape[0], target_len], dtype=torch.float).to(content.device) | |
| temp = torch.arange(src_len+1) * target_len / src_len | |
| current_pos = 0 | |
| for i in range(target_len): | |
| if i < temp[current_pos+1]: | |
| target[:, i] = content[:, current_pos] | |
| else: | |
| current_pos += 1 | |
| target[:, i] = content[:, current_pos] | |
| return target | |
| class HParams(): | |
| def __init__(self, **kwargs): | |
| for k, v in kwargs.items(): | |
| if type(v) == dict: | |
| v = HParams(**v) | |
| self[k] = v | |
| def keys(self): | |
| return self.__dict__.keys() | |
| def items(self): | |
| return self.__dict__.items() | |
| def values(self): | |
| return self.__dict__.values() | |
| def __len__(self): | |
| return len(self.__dict__) | |
| def __getitem__(self, key): | |
| return getattr(self, key) | |
| def __setitem__(self, key, value): | |
| return setattr(self, key, value) | |
| def __contains__(self, key): | |
| return key in self.__dict__ | |
| def __repr__(self): | |
| return self.__dict__.__repr__() | |