Spaces:
Running
Running
File size: 9,993 Bytes
1bafe30 9231de3 d6ceac3 d1b130d d6ceac3 a3c7c9b 1bafe30 920a718 1bafe30 d6ceac3 a3c7c9b d6ceac3 f5f7379 a3c7c9b d1b130d d6ceac3 a3c7c9b 17cc4e0 a3c7c9b 17cc4e0 fcf74fc a3c7c9b d6ceac3 17cc4e0 a3c7c9b fc5bd53 a3c7c9b fc5bd53 d6ceac3 a3c7c9b d6ceac3 a3c7c9b d6ceac3 a3c7c9b d6ceac3 a3c7c9b fcf74fc a3c7c9b 09f3aa3 a3c7c9b 5c6ea42 a3c7c9b 09f3aa3 a3c7c9b 1bafe30 920a718 d1b130d 1bafe30 943caab d1b130d e1f8042 d1b130d f5f7379 e1f8042 f5f7379 943caab d1b130d 1bafe30 d6ceac3 f5f7379 d6ceac3 f5f7379 90342ab c847b55 d6ceac3 c847b55 90342ab d6ceac3 c847b55 d6ceac3 c847b55 d6ceac3 f5f7379 d1b130d f5f7379 c847b55 f5f7379 1bafe30 a3c7c9b 1bafe30 a3c7c9b 1bafe30 d6ceac3 1bafe30 d6ceac3 1bafe30 a3c7c9b 1bafe30 d1b130d 1bafe30 d6ceac3 9231de3 1bafe30 d1b130d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import gradio as gr
import numpy as np
import random
import os
import tempfile
from PIL import Image, ImageOps
import pillow_heif # For HEIF/AVIF support
import io
import fal_client
import base64
# --- Constants ---
MAX_SEED = np.iinfo(np.int32).max
def load_client():
"""Initialize the FAL Client through HF"""
# Register HEIF opener with PIL for AVIF/HEIF support
pillow_heif.register_heif_opener()
# Get token from environment variable
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
raise gr.Error("HF_TOKEN environment variable not found. Please add your Hugging Face token to the Space settings.")
# Set the HF token for fal_client to use HF routing
os.environ["FAL_KEY"] = hf_token
return True
def query_api(image_bytes, prompt, seed, guidance_scale, steps, progress_callback=None):
"""Send request using fal_client"""
load_client()
if progress_callback:
progress_callback(0.1, "Submitting request...")
# Convert image bytes to base64
image_base64 = base64.b64encode(image_bytes).decode('utf-8')
# Create a temporary file for the image
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as temp_file:
temp_file.write(image_bytes)
temp_file_path = temp_file.name
def on_queue_update(update):
if isinstance(update, fal_client.InProgress):
for log in update.logs:
print(f"FAL Log: {log['message']}")
if progress_callback:
progress_callback(0.5, f"Processing: {log['message'][:50]}...")
try:
if progress_callback:
progress_callback(0.3, "Connecting to FAL API...")
# Use fal_client.subscribe following the pattern you provided
result = fal_client.subscribe(
"fal-ai/flux-kontext/dev",
arguments={
"prompt": prompt,
"image_url": f"data:image/png;base64,{image_base64}",
"seed": seed,
"guidance_scale": guidance_scale,
"num_inference_steps": steps,
},
with_logs=True,
on_queue_update=on_queue_update,
)
print(f"FAL Result: {result}")
if progress_callback:
progress_callback(0.9, "Processing result...")
# Handle the result
if isinstance(result, dict):
if 'images' in result and len(result['images']) > 0:
# Get the first image
image_info = result['images'][0]
if isinstance(image_info, dict) and 'url' in image_info:
# Download image from URL
import requests
img_response = requests.get(image_info['url'])
if img_response.status_code == 200:
if progress_callback:
progress_callback(1.0, "Complete!")
return img_response.content
else:
raise gr.Error(f"Failed to download result image: {img_response.status_code}")
elif isinstance(image_info, str):
# Direct URL
import requests
img_response = requests.get(image_info)
if img_response.status_code == 200:
if progress_callback:
progress_callback(1.0, "Complete!")
return img_response.content
elif 'image' in result:
# Single image field
if isinstance(result['image'], dict) and 'url' in result['image']:
import requests
img_response = requests.get(result['image']['url'])
if img_response.status_code == 200:
if progress_callback:
progress_callback(1.0, "Complete!")
return img_response.content
elif isinstance(result['image'], str):
# Could be URL or base64
if result['image'].startswith('http'):
import requests
img_response = requests.get(result['image'])
if img_response.status_code == 200:
if progress_callback:
progress_callback(1.0, "Complete!")
return img_response.content
else:
# Assume base64
try:
if progress_callback:
progress_callback(1.0, "Complete!")
return base64.b64decode(result['image'])
except:
pass
elif 'url' in result:
# Direct URL in result
import requests
img_response = requests.get(result['url'])
if img_response.status_code == 200:
if progress_callback:
progress_callback(1.0, "Complete!")
return img_response.content
# If we get here, the result format is unexpected
raise gr.Error(f"Unexpected result format from FAL API: {result}")
except Exception as e:
raise gr.Error(f"FAL API error: {str(e)}")
finally:
# Clean up temporary file
try:
os.unlink(temp_file_path)
except:
pass
# --- Core Inference Function for ChatInterface ---
def chat_fn(message, chat_history, seed, randomize_seed, guidance_scale, steps, progress=gr.Progress()):
"""
Performs image generation or editing based on user input from the chat interface.
"""
prompt = message["text"]
files = message["files"]
if not prompt and not files:
raise gr.Error("Please provide a prompt and/or upload an image.")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if files:
print(f"Received image: {files[0]}")
try:
# Try to open and convert the image
input_image = Image.open(files[0])
# Convert to RGB if needed (handles RGBA, P, etc.)
if input_image.mode != "RGB":
input_image = input_image.convert("RGB")
# Auto-orient the image based on EXIF data
input_image = ImageOps.exif_transpose(input_image)
# Convert PIL image to bytes
img_byte_arr = io.BytesIO()
input_image.save(img_byte_arr, format='PNG')
img_byte_arr.seek(0)
image_bytes = img_byte_arr.getvalue()
except Exception as e:
raise gr.Error(f"Could not process the uploaded image: {str(e)}. Please try uploading a different image format (JPEG, PNG, WebP).")
progress(0.1, desc="Processing image...")
else:
# For text-to-image, we need a placeholder image or handle differently
# FLUX.1 Kontext is primarily an image-to-image model
raise gr.Error("This model (FLUX.1 Kontext) requires an input image. Please upload an image to edit.")
try:
# Make API request
result_bytes = query_api(image_bytes, prompt, seed, guidance_scale, steps, progress_callback=progress)
# Try to convert response bytes to PIL Image
try:
image = Image.open(io.BytesIO(result_bytes))
except Exception as img_error:
print(f"Failed to open image: {img_error}")
print(f"Image bytes type: {type(result_bytes)}, length: {len(result_bytes) if hasattr(result_bytes, '__len__') else 'unknown'}")
# Try to decode as base64 if direct opening failed
try:
import base64
decoded_bytes = base64.b64decode(result_bytes)
image = Image.open(io.BytesIO(decoded_bytes))
except:
raise gr.Error(f"Could not process API response as image. Response length: {len(result_bytes) if hasattr(result_bytes, '__len__') else 'unknown'}")
progress(1.0, desc="Complete!")
return gr.Image(value=image)
except gr.Error:
# Re-raise gradio errors as-is
raise
except Exception as e:
raise gr.Error(f"Failed to generate image: {str(e)}")
# --- UI Definition using gr.ChatInterface ---
seed_slider = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
randomize_checkbox = gr.Checkbox(label="Randomize seed", value=False)
guidance_slider = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=2.5)
steps_slider = gr.Slider(label="Steps", minimum=1, maximum=30, value=28, step=1)
demo = gr.ChatInterface(
fn=chat_fn,
title="FLUX.1 Kontext [dev] - FAL Client",
description="""<p style='text-align: center;'>
A simple chat UI for the <b>FLUX.1 Kontext [dev]</b> model using FAL AI client through Hugging Face.
<br>
<b>Upload an image</b> and type your editing instructions (e.g., "Turn the cat into a tiger", "Add a hat").
<br>
This model specializes in understanding context and making precise edits to your images.
<br>
Find the model on <a href='https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev' target='_blank'>Hugging Face</a>.
<br>
<b>Note:</b> Uses HF_TOKEN environment variable through HF inference providers.
</p>""",
multimodal=True,
textbox=gr.MultimodalTextbox(
file_types=["image"],
placeholder="Upload an image and type your editing instructions...",
render=False
),
additional_inputs=[
seed_slider,
randomize_checkbox,
guidance_slider,
steps_slider
],
theme="soft"
)
if __name__ == "__main__":
demo.launch() |