akhaliq's picture
akhaliq HF Staff
Upload app.py with huggingface_hub
b7bf121 verified
raw
history blame
5.43 kB
import gradio as gr
import torch
from PIL import Image
from transformers import AutoTokenizer, AutoModelForCausalLM
import spaces
# Model configuration
MID = "apple/FastVLM-0.5B"
IMAGE_TOKEN_INDEX = -200
# Load model and tokenizer (will be loaded on first GPU allocation)
tok = None
model = None
def load_model():
global tok, model
if tok is None or model is None:
print("Loading model...")
tok = AutoTokenizer.from_pretrained(MID, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MID,
torch_dtype=torch.float16,
device_map="cuda",
trust_remote_code=True,
)
print("Model loaded successfully!")
return tok, model
@spaces.GPU(duration=60)
def caption_image(image, custom_prompt=None):
"""
Generate a caption for the input image.
Args:
image: PIL Image from Gradio
custom_prompt: Optional custom prompt to use instead of default
Returns:
Generated caption text
"""
if image is None:
return "Please upload an image first."
try:
# Load model if not already loaded
tok, model = load_model()
# Convert image to RGB if needed
if image.mode != "RGB":
image = image.convert("RGB")
# Use custom prompt or default
prompt = custom_prompt if custom_prompt else "Describe this image in detail."
# Build chat message
messages = [
{"role": "user", "content": f"<image>\n{prompt}"}
]
# Render to string to place <image> token correctly
rendered = tok.apply_chat_template(
messages, add_generation_prompt=True, tokenize=False
)
# Split at image token
pre, post = rendered.split("<image>", 1)
# Tokenize text around the image token
pre_ids = tok(pre, return_tensors="pt", add_special_tokens=False).input_ids
post_ids = tok(post, return_tensors="pt", add_special_tokens=False).input_ids
# Insert IMAGE token id at placeholder position
img_tok = torch.tensor([[IMAGE_TOKEN_INDEX]], dtype=pre_ids.dtype)
input_ids = torch.cat([pre_ids, img_tok, post_ids], dim=1).to(model.device)
attention_mask = torch.ones_like(input_ids, device=model.device)
# Preprocess image using model's vision tower
px = model.get_vision_tower().image_processor(
images=image, return_tensors="pt"
)["pixel_values"]
px = px.to(model.device, dtype=model.dtype)
# Generate caption
with torch.no_grad():
out = model.generate(
inputs=input_ids,
attention_mask=attention_mask,
images=px,
max_new_tokens=128,
do_sample=False, # Deterministic generation
temperature=1.0,
)
# Decode and return the generated text
generated_text = tok.decode(out[0], skip_special_tokens=True)
# Extract only the assistant's response
if "assistant" in generated_text:
response = generated_text.split("assistant")[-1].strip()
else:
response = generated_text
return response
except Exception as e:
return f"Error generating caption: {str(e)}"
# Create Gradio interface
with gr.Blocks(title="FastVLM Image Captioning") as demo:
gr.Markdown(
"""
# 🖼️ FastVLM Image Captioning
Upload an image to generate a detailed caption using Apple's FastVLM-0.5B model.
You can use the default prompt or provide your own custom prompt.
"""
)
with gr.Row():
with gr.Column():
image_input = gr.Image(
type="pil",
label="Upload Image",
elem_id="image-upload"
)
custom_prompt = gr.Textbox(
label="Custom Prompt (Optional)",
placeholder="Leave empty for default: 'Describe this image in detail.'",
lines=2
)
with gr.Row():
clear_btn = gr.ClearButton([image_input, custom_prompt])
generate_btn = gr.Button("Generate Caption", variant="primary")
with gr.Column():
output = gr.Textbox(
label="Generated Caption",
lines=8,
max_lines=15,
show_copy_button=True
)
# Event handlers
generate_btn.click(
fn=caption_image,
inputs=[image_input, custom_prompt],
outputs=output
)
# Also generate on image upload if no custom prompt
image_input.change(
fn=lambda img, prompt: caption_image(img, prompt) if img is not None and not prompt else None,
inputs=[image_input, custom_prompt],
outputs=output
)
gr.Markdown(
"""
---
**Model:** [apple/FastVLM-0.5B](https://huggingface.co/apple/FastVLM-0.5B)
**Note:** This Space uses ZeroGPU for dynamic GPU allocation.
"""
)
if __name__ == "__main__":
demo.launch(
share=False,
show_error=True,
server_name="0.0.0.0",
server_port=7860
)