aks2022 commited on
Commit
11f634e
·
verified ·
1 Parent(s): a7494eb

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. app.py +15 -13
app.py CHANGED
@@ -5,7 +5,7 @@ import pandas as pd # For data manipulation
5
  from flask import Flask, request, jsonify # For creating the Flask API
6
 
7
  # Initialize the Flask application
8
- superkart_sales_forecast_api = Flask("SuperKart Sales Forecast Backend V1")
9
 
10
  # Load the trained machine learning model
11
  model = joblib.load("SuperKart_Sales_Forecast_v1_0.joblib")
@@ -17,7 +17,7 @@ def home():
17
  This function handles GET requests to the root URL ('/') of the API.
18
  It returns a simple welcome message.
19
  """
20
- return "Welcome to the SuperKart Sales Forecast API V1!"
21
 
22
  # Define an endpoint for single property prediction (POST request)
23
  @superkart_sales_forecast_api.post('/v1/sales')
@@ -32,16 +32,18 @@ def predict_sales():
32
 
33
  # Extract relevant features from the JSON data
34
  sample = {
35
- 'product_weight': property_data['product_weight'],
36
- 'product_sugar_content': property_data['product_sugar_content'],
37
- 'product_allocated_area': property_data['product_allocated_area'],
38
- 'product_type': property_data['product_type'],
39
- 'product_mrp': property_data['product_mrp'],
40
- 'store_establishment_year': property_data['store_establishment_year'],
41
- 'store_size': property_data['store_size'],
42
- 'store_location_city_type': property_data['store_location_city_type'],
43
- 'store_type': property_data['store_type']
44
- }
 
 
45
 
46
  # Convert the extracted data into a Pandas DataFrame
47
  input_data = pd.DataFrame([sample])
@@ -87,4 +89,4 @@ def predict_sales_batch():
87
 
88
  # Run the Flask application in debug mode if this script is executed directly
89
  if __name__ == '__main__':
90
- superkart_sales_forecast_api.run(debug=True)
 
5
  from flask import Flask, request, jsonify # For creating the Flask API
6
 
7
  # Initialize the Flask application
8
+ superkart_sales_forecast_api = Flask("SuperKart Sales Forecast Backend")
9
 
10
  # Load the trained machine learning model
11
  model = joblib.load("SuperKart_Sales_Forecast_v1_0.joblib")
 
17
  This function handles GET requests to the root URL ('/') of the API.
18
  It returns a simple welcome message.
19
  """
20
+ return "Welcome to the SuperKart Sales Forecast API!"
21
 
22
  # Define an endpoint for single property prediction (POST request)
23
  @superkart_sales_forecast_api.post('/v1/sales')
 
32
 
33
  # Extract relevant features from the JSON data
34
  sample = {
35
+ 'Product_Weight': property_data['product_weight'],
36
+ 'Product_Sugar_Content': property_data['product_sugar_content'],
37
+ 'Product_Allocated_Area': property_data['product_allocated_area'],
38
+ 'Product_Type': property_data['product_type'],
39
+ 'Product_MRP': property_data['product_mrp'],
40
+ 'Store_Establishment_Year': property_data['store_establishment_year'],
41
+ 'Store_Size': property_data['store_size'],
42
+ 'Store_Location_City_Type': property_data['store_location_city_type'],
43
+ 'Store_Type': property_data['store_type']
44
+ }
45
+
46
+
47
 
48
  # Convert the extracted data into a Pandas DataFrame
49
  input_data = pd.DataFrame([sample])
 
89
 
90
  # Run the Flask application in debug mode if this script is executed directly
91
  if __name__ == '__main__':
92
+ rental_price_predictor_api.run(debug=True)