aks2022 commited on
Commit
378b08f
·
verified ·
1 Parent(s): a84225c

Upload folder using huggingface_hub

Browse files
Files changed (4) hide show
  1. Dockerfile +16 -0
  2. SuperKart_Sales_Forecast_v1_0.joblib +3 -0
  3. app.py +90 -0
  4. requirements.txt +11 -0
Dockerfile ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.9-slim
2
+
3
+ # Set the working directory inside the container
4
+ WORKDIR /app
5
+
6
+ # Copy all files from the current directory to the container's working directory
7
+ COPY . .
8
+
9
+ # Install dependencies from the requirements file without using cache to reduce image size
10
+ RUN pip install --no-cache-dir --upgrade -r requirements.txt
11
+
12
+ # Define the command to start the application using Gunicorn with 4 worker processes
13
+ # - `-w 4`: Uses 4 worker processes for handling requests
14
+ # - `-b 0.0.0.0:7860`: Binds the server to port 7860 on all network interfaces
15
+ # - `app:app`: Runs the Flask app (assuming `app.py` contains the Flask instance named `app`)
16
+ CMD ["gunicorn", "-w", "4", "-b", "0.0.0.0:7860", "app:superkart_sales_forecast_api"]
SuperKart_Sales_Forecast_v1_0.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d962bd28b6efb9bad53202654cd418bcaed8f9c5d37dda3978a9840e4b4ebcc5
3
+ size 209177
app.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Import necessary libraries
2
+ import numpy as np
3
+ import joblib # For loading the serialized model
4
+ import pandas as pd # For data manipulation
5
+ from flask import Flask, request, jsonify # For creating the Flask API
6
+
7
+ # Initialize the Flask application
8
+ superkart_sales_forecast_api = Flask("SuperKart Sales Forecast Backend V1")
9
+
10
+ # Load the trained machine learning model
11
+ model = joblib.load("SuperKart_Sales_Forecast_v1_0.joblib")
12
+
13
+ # Define a route for the home page (GET request)
14
+ @superkart_sales_forecast_api.get('/')
15
+ def home():
16
+ """
17
+ This function handles GET requests to the root URL ('/') of the API.
18
+ It returns a simple welcome message.
19
+ """
20
+ return "Welcome to the SuperKart Sales Forecast API V1!"
21
+
22
+ # Define an endpoint for single property prediction (POST request)
23
+ @superkart_sales_forecast_api.post('/v1/sales')
24
+ def predict_sales():
25
+ """
26
+ This function handles POST requests to the '/v1/sales' endpoint.
27
+ It expects a JSON payload containing property details and returns
28
+ the predicted rental price as a JSON response.
29
+ """
30
+ # Get the JSON data from the request body
31
+ property_data = request.get_json()
32
+
33
+ # Extract relevant features from the JSON data
34
+ sample = {
35
+ 'product_weight': property_data['product_weight'],
36
+ 'product_sugar_content': property_data['product_sugar_content'],
37
+ 'product_allocated_area': property_data['product_allocated_area'],
38
+ 'product_type': property_data['product_type'],
39
+ 'product_mrp': property_data['product_mrp'],
40
+ 'store_establishment_year': property_data['store_establishment_year'],
41
+ 'store_size': property_data['store_size'],
42
+ 'store_location_city_type': property_data['store_location_city_type'],
43
+ 'store_type': property_data['store_type']
44
+ }
45
+
46
+ # Convert the extracted data into a Pandas DataFrame
47
+ input_data = pd.DataFrame([sample])
48
+
49
+ # Make prediction (get sales)
50
+ predicted_sales = model.predict(input_data)[0]
51
+
52
+ # # Convert predicted_price to Python float
53
+ # predicted_sales = round(float(predicted_sales), 2)
54
+ # # The conversion above is needed as we convert the model prediction (log price) to actual price using np.exp, which returns predictions as NumPy float32 values.
55
+ # # When we send this value directly within a JSON response, Flask's jsonify function encounters a datatype error
56
+
57
+ # Return the actual price
58
+ return jsonify({'Predicted Sales Forecast (in dollars)': predicted_sales})
59
+
60
+
61
+ # Define an endpoint for batch prediction (POST request)
62
+ @superkart_sales_forecast_api.post('/v1/salesbatch')
63
+ def predict_sales_batch():
64
+ """
65
+ This function handles POST requests to the '/v1/salesbatch' endpoint.
66
+ It expects a CSV file containing property details for multiple properties
67
+ and returns the predicted rental prices as a dictionary in the JSON response.
68
+ """
69
+ # Get the uploaded CSV file from the request
70
+ file = request.files['file']
71
+
72
+ # Read the CSV file into a Pandas DataFrame
73
+ input_data = pd.read_csv(file)
74
+
75
+ # Make predictions for all properties in the DataFrame (get log_prices)
76
+ predicted_sales = model.predict(input_data).tolist()
77
+
78
+ # # Calculate actual prices
79
+ # predicted_prices = [round(float(np.exp(log_price)), 2) for log_price in predicted_log_prices]
80
+
81
+ # Create a dictionary of predictions with property IDs as keys
82
+ property_ids = input_data['Product_Id'].tolist() # Assuming 'id' is the property ID column
83
+ output_dict = dict(zip(property_ids, predicted_sales)) # Use actual prices
84
+
85
+ # Return the predictions dictionary as a JSON response
86
+ return output_dict
87
+
88
+ # Run the Flask application in debug mode if this script is executed directly
89
+ if __name__ == '__main__':
90
+ rental_price_predictor_api.run(debug=True)
requirements.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ pandas==2.2.2
2
+ numpy==2.0.2
3
+ scikit-learn==1.6.1
4
+ xgboost==2.1.4
5
+ joblib==1.4.2
6
+ Werkzeug==2.2.2
7
+ flask==2.2.2
8
+ gunicorn==20.1.0
9
+ requests==2.28.1
10
+ uvicorn[standard]
11
+ streamlit==1.43.2