Upload folder using huggingface_hub
Browse files- Dockerfile +16 -0
- SuperKart_Sales_Forecast_v1_0.joblib +3 -0
- app.py +90 -0
- requirements.txt +11 -0
Dockerfile
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.9-slim
|
| 2 |
+
|
| 3 |
+
# Set the working directory inside the container
|
| 4 |
+
WORKDIR /app
|
| 5 |
+
|
| 6 |
+
# Copy all files from the current directory to the container's working directory
|
| 7 |
+
COPY . .
|
| 8 |
+
|
| 9 |
+
# Install dependencies from the requirements file without using cache to reduce image size
|
| 10 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
| 11 |
+
|
| 12 |
+
# Define the command to start the application using Gunicorn with 4 worker processes
|
| 13 |
+
# - `-w 4`: Uses 4 worker processes for handling requests
|
| 14 |
+
# - `-b 0.0.0.0:7860`: Binds the server to port 7860 on all network interfaces
|
| 15 |
+
# - `app:app`: Runs the Flask app (assuming `app.py` contains the Flask instance named `app`)
|
| 16 |
+
CMD ["gunicorn", "-w", "4", "-b", "0.0.0.0:7860", "app:superkart_sales_forecast_api"]
|
SuperKart_Sales_Forecast_v1_0.joblib
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d962bd28b6efb9bad53202654cd418bcaed8f9c5d37dda3978a9840e4b4ebcc5
|
| 3 |
+
size 209177
|
app.py
ADDED
|
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Import necessary libraries
|
| 2 |
+
import numpy as np
|
| 3 |
+
import joblib # For loading the serialized model
|
| 4 |
+
import pandas as pd # For data manipulation
|
| 5 |
+
from flask import Flask, request, jsonify # For creating the Flask API
|
| 6 |
+
|
| 7 |
+
# Initialize the Flask application
|
| 8 |
+
superkart_sales_forecast_api = Flask("SuperKart Sales Forecast Backend V1")
|
| 9 |
+
|
| 10 |
+
# Load the trained machine learning model
|
| 11 |
+
model = joblib.load("SuperKart_Sales_Forecast_v1_0.joblib")
|
| 12 |
+
|
| 13 |
+
# Define a route for the home page (GET request)
|
| 14 |
+
@superkart_sales_forecast_api.get('/')
|
| 15 |
+
def home():
|
| 16 |
+
"""
|
| 17 |
+
This function handles GET requests to the root URL ('/') of the API.
|
| 18 |
+
It returns a simple welcome message.
|
| 19 |
+
"""
|
| 20 |
+
return "Welcome to the SuperKart Sales Forecast API V1!"
|
| 21 |
+
|
| 22 |
+
# Define an endpoint for single property prediction (POST request)
|
| 23 |
+
@superkart_sales_forecast_api.post('/v1/sales')
|
| 24 |
+
def predict_sales():
|
| 25 |
+
"""
|
| 26 |
+
This function handles POST requests to the '/v1/sales' endpoint.
|
| 27 |
+
It expects a JSON payload containing property details and returns
|
| 28 |
+
the predicted rental price as a JSON response.
|
| 29 |
+
"""
|
| 30 |
+
# Get the JSON data from the request body
|
| 31 |
+
property_data = request.get_json()
|
| 32 |
+
|
| 33 |
+
# Extract relevant features from the JSON data
|
| 34 |
+
sample = {
|
| 35 |
+
'product_weight': property_data['product_weight'],
|
| 36 |
+
'product_sugar_content': property_data['product_sugar_content'],
|
| 37 |
+
'product_allocated_area': property_data['product_allocated_area'],
|
| 38 |
+
'product_type': property_data['product_type'],
|
| 39 |
+
'product_mrp': property_data['product_mrp'],
|
| 40 |
+
'store_establishment_year': property_data['store_establishment_year'],
|
| 41 |
+
'store_size': property_data['store_size'],
|
| 42 |
+
'store_location_city_type': property_data['store_location_city_type'],
|
| 43 |
+
'store_type': property_data['store_type']
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
# Convert the extracted data into a Pandas DataFrame
|
| 47 |
+
input_data = pd.DataFrame([sample])
|
| 48 |
+
|
| 49 |
+
# Make prediction (get sales)
|
| 50 |
+
predicted_sales = model.predict(input_data)[0]
|
| 51 |
+
|
| 52 |
+
# # Convert predicted_price to Python float
|
| 53 |
+
# predicted_sales = round(float(predicted_sales), 2)
|
| 54 |
+
# # The conversion above is needed as we convert the model prediction (log price) to actual price using np.exp, which returns predictions as NumPy float32 values.
|
| 55 |
+
# # When we send this value directly within a JSON response, Flask's jsonify function encounters a datatype error
|
| 56 |
+
|
| 57 |
+
# Return the actual price
|
| 58 |
+
return jsonify({'Predicted Sales Forecast (in dollars)': predicted_sales})
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
# Define an endpoint for batch prediction (POST request)
|
| 62 |
+
@superkart_sales_forecast_api.post('/v1/salesbatch')
|
| 63 |
+
def predict_sales_batch():
|
| 64 |
+
"""
|
| 65 |
+
This function handles POST requests to the '/v1/salesbatch' endpoint.
|
| 66 |
+
It expects a CSV file containing property details for multiple properties
|
| 67 |
+
and returns the predicted rental prices as a dictionary in the JSON response.
|
| 68 |
+
"""
|
| 69 |
+
# Get the uploaded CSV file from the request
|
| 70 |
+
file = request.files['file']
|
| 71 |
+
|
| 72 |
+
# Read the CSV file into a Pandas DataFrame
|
| 73 |
+
input_data = pd.read_csv(file)
|
| 74 |
+
|
| 75 |
+
# Make predictions for all properties in the DataFrame (get log_prices)
|
| 76 |
+
predicted_sales = model.predict(input_data).tolist()
|
| 77 |
+
|
| 78 |
+
# # Calculate actual prices
|
| 79 |
+
# predicted_prices = [round(float(np.exp(log_price)), 2) for log_price in predicted_log_prices]
|
| 80 |
+
|
| 81 |
+
# Create a dictionary of predictions with property IDs as keys
|
| 82 |
+
property_ids = input_data['Product_Id'].tolist() # Assuming 'id' is the property ID column
|
| 83 |
+
output_dict = dict(zip(property_ids, predicted_sales)) # Use actual prices
|
| 84 |
+
|
| 85 |
+
# Return the predictions dictionary as a JSON response
|
| 86 |
+
return output_dict
|
| 87 |
+
|
| 88 |
+
# Run the Flask application in debug mode if this script is executed directly
|
| 89 |
+
if __name__ == '__main__':
|
| 90 |
+
rental_price_predictor_api.run(debug=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pandas==2.2.2
|
| 2 |
+
numpy==2.0.2
|
| 3 |
+
scikit-learn==1.6.1
|
| 4 |
+
xgboost==2.1.4
|
| 5 |
+
joblib==1.4.2
|
| 6 |
+
Werkzeug==2.2.2
|
| 7 |
+
flask==2.2.2
|
| 8 |
+
gunicorn==20.1.0
|
| 9 |
+
requests==2.28.1
|
| 10 |
+
uvicorn[standard]
|
| 11 |
+
streamlit==1.43.2
|