aks2022 commited on
Commit
b4206dc
·
verified ·
1 Parent(s): 0ac0954

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. app.py +5 -11
app.py CHANGED
@@ -53,7 +53,7 @@ def predict_sales():
53
 
54
  # Convert to Python float and round
55
  predicted_sales = round(float(predicted_sales), 2)
56
-
57
  # Return the actual price
58
  return jsonify({'Predicted Sales Forecast (in dollars)': predicted_sales})
59
 
@@ -74,17 +74,11 @@ def predict_sales_batch():
74
 
75
  # Make predictions for all properties in the DataFrame (get log_prices)
76
  predicted_sales = model.predict(input_data).tolist()
 
 
77
 
78
- # # Calculate actual prices
79
- # predicted_prices = [round(float(np.exp(log_price)), 2) for log_price in predicted_log_prices]
80
-
81
- # Create a dictionary of predictions with property IDs as keys
82
- property_ids = input_data['Product_Id'].tolist() # Assuming 'id' is the property ID column
83
- output_dict = dict(zip(property_ids, predicted_sales)) # Use actual prices
84
-
85
- # Return the predictions dictionary as a JSON response
86
- return output_dict
87
 
88
  # Run the Flask application in debug mode if this script is executed directly
89
  if __name__ == '__main__':
90
- rental_price_predictor_api.run(debug=True)
 
53
 
54
  # Convert to Python float and round
55
  predicted_sales = round(float(predicted_sales), 2)
56
+
57
  # Return the actual price
58
  return jsonify({'Predicted Sales Forecast (in dollars)': predicted_sales})
59
 
 
74
 
75
  # Make predictions for all properties in the DataFrame (get log_prices)
76
  predicted_sales = model.predict(input_data).tolist()
77
+ # Use row indices as keys
78
+ output_dict = {f"Row_{i}": round(float(pred), 2) for i, pred in enumerate(predicted_sales)}
79
 
80
+ return jsonify(output_dict)
 
 
 
 
 
 
 
 
81
 
82
  # Run the Flask application in debug mode if this script is executed directly
83
  if __name__ == '__main__':
84
+ superkart_sales_forecast_api.run(debug=True)