# Import necessary libraries import numpy as np import joblib # For loading the serialized model import pandas as pd # For data manipulation from flask import Flask, request, jsonify # For creating the Flask API # Initialize the Flask application superkart_sales_forecast_api = Flask("SuperKart Sales Forecast Backend") # Load the trained machine learning model model = joblib.load("SuperKart_Sales_Forecast_v1_0.joblib") # Define a route for the home page (GET request) @superkart_sales_forecast_api.get('/') def home(): """ This function handles GET requests to the root URL ('/') of the API. It returns a simple welcome message. """ return "Welcome to the SuperKart Sales Forecast API!" # Define an endpoint for single property prediction (POST request) @superkart_sales_forecast_api.post('/v1/sales') def predict_sales(): """ This function handles POST requests to the '/v1/sales' endpoint. It expects a JSON payload containing property details and returns the predicted rental price as a JSON response. """ # Get the JSON data from the request body property_data = request.get_json() # Extract relevant features from the JSON data sample = { 'Product_Weight': property_data['product_weight'], 'Product_Sugar_Content': property_data['product_sugar_content'], 'Product_Allocated_Area': property_data['product_allocated_area'], 'Product_Type': property_data['product_type'], 'Product_MRP': property_data['product_mrp'], 'Store_Establishment_Year': property_data['store_establishment_year'], 'Store_Size': property_data['store_size'], 'Store_Location_City_Type': property_data['store_location_city_type'], 'Store_Type': property_data['store_type'] } # Convert the extracted data into a Pandas DataFrame input_data = pd.DataFrame([sample]) # Make prediction (get sales) predicted_sales = model.predict(input_data)[0] # Convert to Python float and round predicted_sales = round(float(predicted_sales), 2) # Return the actual price return jsonify({'Predicted Sales Forecast (in dollars)': predicted_sales}) # Define an endpoint for batch prediction (POST request) @superkart_sales_forecast_api.post('/v1/salesbatch') def predict_sales_batch(): """ This function handles POST requests to the '/v1/salesbatch' endpoint. It expects a CSV file containing property details for multiple properties and returns the predicted rental prices as a dictionary in the JSON response. """ # Get the uploaded CSV file from the request file = request.files['file'] # Read the CSV file into a Pandas DataFrame input_data = pd.read_csv(file) # Make predictions for all properties in the DataFrame (get log_prices) predicted_sales = model.predict(input_data).tolist() # # Calculate actual prices # predicted_prices = [round(float(np.exp(log_price)), 2) for log_price in predicted_log_prices] # Create a dictionary of predictions with property IDs as keys property_ids = input_data['Product_Id'].tolist() # Assuming 'id' is the property ID column output_dict = dict(zip(property_ids, predicted_sales)) # Use actual prices # Return the predictions dictionary as a JSON response return output_dict # Run the Flask application in debug mode if this script is executed directly if __name__ == '__main__': rental_price_predictor_api.run(debug=True)