aks2022's picture
Upload folder using huggingface_hub
0ee238e verified
import streamlit as st
import pandas as pd
import requests
# Set the title of the Streamlit app
st.title("SuperKart Sales Forecast")
# Section for online prediction
st.subheader("Sales Prediction")
# Collect user input for property features
product_weight = st.number_input(("Product Weight")
product_sugar_content = st.selectbox("Product Sugar Content", ["Low Sugar", "Regular", "No Sugar"])
product_allocated_area = st.number_input(("Product Allocated Area")
product_type = st.selectbox("Product Type", ["Fruits and Vegetables", "Snack Foods", "Frozen Foods", "Dairy", "Household", "Baking Goods", "Canned",
"Health and Hygiene", "Meat", "Soft Drinks", "Breads", "Hard Drinks", "Others", "Starchy Foods", "Breakfast", "Seafood"])
product_mrp = st.number_input(("Product MRP")
store_establishment_year = st.number_input("Store Establishment Year", min_value=1900, step=1)
store_size = st.number_input("Store Size", min_value=0, step=1, value=1)
store_location_city_type = st.selectbox("Store Location City Type", ["Tier 1", "Tier 2", "Tier 3"])
store_type = st.selectbox("Store Type", ["Food Mart", "Departmental Store", "Supermarket Type1", "Supermarket Type2" ])
# Convert user input into a DataFrame
input_data = pd.DataFrame([{
'product_weight': product_weight,
'product_sugar_content': product_sugar_content,
'product_allocated_area': product_allocated_area,
'product_type': product_type,
'product_mrp': product_mrp,
'store_establishment_year': store_establishment_year
'store_size': store_size,
'store_location_city_type': store_location_city_type,
'store_type': store_type
}])
# Make prediction when the "Predict" button is clicked
if st.button("Predict"):
response = requests.post("https://aks2022-superkartsalesforecastbackend.hf.space/v1/sales", json=input_data.to_dict(orient='records')[0]) # Send data to Flask API
if response.status_code == 200:
prediction = response.json()['Predicted Price (in dollars)']
st.success(f"Predicted Rental Price (in dollars): {prediction}")
else:
st.error("Error making prediction.")
# Section for batch prediction
st.subheader("Batch Prediction")
# Allow users to upload a CSV file for batch prediction
uploaded_file = st.file_uploader("Upload CSV file for batch prediction", type=["csv"])
# Make batch prediction when the "Predict Batch" button is clicked
if uploaded_file is not None:
if st.button("Predict Batch"):
response = requests.post("https://aks2022-superkartsalesforecastbackend.hf.space/v1/salesbatch", files={"file": uploaded_file}) # Send file to Flask API
if response.status_code == 200:
predictions = response.json()
st.success("Batch predictions completed!")
st.write(predictions) # Display the predictions
else:
st.error("Error making batch prediction.")