Spaces:
Running
Running
upd to latest gradio veresion; format
Browse files- .gitignore +4 -0
- app.py +36 -38
- pipeline.py +13 -20
- requirements.txt +1 -0
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.venv
|
2 |
+
.env
|
3 |
+
__pycache__
|
4 |
+
.DS_Store
|
app.py
CHANGED
@@ -1,16 +1,13 @@
|
|
1 |
from pprint import pformat
|
2 |
|
3 |
-
from huggingface_hub import hf_hub_download
|
4 |
-
|
5 |
-
import librosa
|
6 |
-
|
7 |
import gradio as gr
|
|
|
|
|
8 |
|
9 |
from pipeline import PreTrainedPipeline
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
LM_HUB_FP = 'language_model/cv8be_5gram.bin'
|
14 |
MODEL_SAMPLING_RATE = 16_000 # 16kHz
|
15 |
|
16 |
# download Language Model from HF Hub
|
@@ -20,18 +17,18 @@ lm_fp = hf_hub_download(repo_id=HF_HUB_URL, filename=LM_HUB_FP)
|
|
20 |
pipeline = PreTrainedPipeline(model_path=HF_HUB_URL, language_model_fp=lm_fp)
|
21 |
|
22 |
|
23 |
-
def main(recorded_audio_fp: str, uploaded_audio_fp: str):
|
24 |
audio_fp = None
|
25 |
if recorded_audio_fp is not None:
|
26 |
audio_fp = recorded_audio_fp
|
27 |
-
used_audiofile =
|
28 |
elif uploaded_audio_fp is not None:
|
29 |
audio_fp = uploaded_audio_fp
|
30 |
-
used_audiofile =
|
31 |
else:
|
32 |
return (
|
33 |
-
|
34 |
-
|
35 |
)
|
36 |
|
37 |
# read audio file
|
@@ -39,19 +36,19 @@ def main(recorded_audio_fp: str, uploaded_audio_fp: str):
|
|
39 |
|
40 |
# recognize speech
|
41 |
pipeline_res = pipeline(inputs=inputs)
|
42 |
-
text = pipeline_res[
|
43 |
|
44 |
# add technical information to the output
|
45 |
tech_data = pipeline_res
|
46 |
-
del tech_data[
|
47 |
-
tech_data[
|
48 |
-
tech_data[
|
49 |
-
tech_data[
|
50 |
-
tech_data[
|
51 |
-
tech_data[
|
52 |
-
tech_data[
|
53 |
-
tech_data[
|
54 |
-
tech_data[
|
55 |
|
56 |
tech_data_str = pformat(tech_data)
|
57 |
|
@@ -67,26 +64,27 @@ The model used can be found here: [ales/wav2vec2-cv-be](https://huggingface.co/a
|
|
67 |
iface = gr.Interface(
|
68 |
fn=main,
|
69 |
inputs=[
|
70 |
-
gr.
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
),
|
75 |
-
gr.
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
),
|
80 |
],
|
81 |
outputs=[
|
82 |
-
gr.
|
83 |
-
gr.
|
84 |
],
|
85 |
-
title=
|
86 |
-
description=(
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
90 |
)
|
91 |
|
92 |
-
iface.launch(
|
|
|
1 |
from pprint import pformat
|
2 |
|
|
|
|
|
|
|
|
|
3 |
import gradio as gr
|
4 |
+
import librosa
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
|
7 |
from pipeline import PreTrainedPipeline
|
8 |
|
9 |
+
HF_HUB_URL = "ales/wav2vec2-cv-be"
|
10 |
+
LM_HUB_FP = "language_model/cv8be_5gram.bin"
|
|
|
11 |
MODEL_SAMPLING_RATE = 16_000 # 16kHz
|
12 |
|
13 |
# download Language Model from HF Hub
|
|
|
17 |
pipeline = PreTrainedPipeline(model_path=HF_HUB_URL, language_model_fp=lm_fp)
|
18 |
|
19 |
|
20 |
+
def main(recorded_audio_fp: str | None, uploaded_audio_fp: str | None):
|
21 |
audio_fp = None
|
22 |
if recorded_audio_fp is not None:
|
23 |
audio_fp = recorded_audio_fp
|
24 |
+
used_audiofile = "recorded"
|
25 |
elif uploaded_audio_fp is not None:
|
26 |
audio_fp = uploaded_audio_fp
|
27 |
+
used_audiofile = "uploaded"
|
28 |
else:
|
29 |
return (
|
30 |
+
"Памылка! Вы мусіце альбо запісаць, альбо запампаваць аўдыяфайл.",
|
31 |
+
"Error! You have to either record or upload an audiofile.",
|
32 |
)
|
33 |
|
34 |
# read audio file
|
|
|
36 |
|
37 |
# recognize speech
|
38 |
pipeline_res = pipeline(inputs=inputs)
|
39 |
+
text = pipeline_res["text"][0] # unpack batch of size 1
|
40 |
|
41 |
# add technical information to the output
|
42 |
tech_data = pipeline_res
|
43 |
+
del tech_data["text"]
|
44 |
+
tech_data["used_audiofile"] = used_audiofile
|
45 |
+
tech_data["recorded_file_present"] = recorded_audio_fp is not None
|
46 |
+
tech_data["uploaded_file_present"] = uploaded_audio_fp is not None
|
47 |
+
tech_data["audiofile_path"] = audio_fp
|
48 |
+
tech_data["model_sampling_rate"] = MODEL_SAMPLING_RATE
|
49 |
+
tech_data["inputs_shape"] = inputs.shape
|
50 |
+
tech_data["inputs_max"] = inputs.max().item()
|
51 |
+
tech_data["inputs_min"] = inputs.min().item()
|
52 |
|
53 |
tech_data_str = pformat(tech_data)
|
54 |
|
|
|
64 |
iface = gr.Interface(
|
65 |
fn=main,
|
66 |
inputs=[
|
67 |
+
gr.Audio(
|
68 |
+
sources=["microphone"],
|
69 |
+
type="filepath",
|
70 |
+
label="Запішыце аўдыяфайл, каб распазнаць маўленьне",
|
71 |
),
|
72 |
+
gr.Audio(
|
73 |
+
sources=["upload"],
|
74 |
+
type="filepath",
|
75 |
+
label="Альбо загрузіце ўжо запісаны аўдыяфайл сюды",
|
76 |
),
|
77 |
],
|
78 |
outputs=[
|
79 |
+
gr.Textbox(label="Распазнаны тэкст"),
|
80 |
+
gr.Textbox(label="Тэхнічная інфармацыя"),
|
81 |
],
|
82 |
+
title="wav2vec2 fine-tuned on CommonVoice 8 Be + Language Model",
|
83 |
+
description=(
|
84 |
+
"Мадэль распазнаваньня беларускага маўленьня, навучаная на датсэце Common Voice 8.\n"
|
85 |
+
"Акустычная мадэль + моўная мадэль."
|
86 |
+
),
|
87 |
+
article=article,
|
88 |
)
|
89 |
|
90 |
+
iface.launch()
|
pipeline.py
CHANGED
@@ -1,23 +1,17 @@
|
|
1 |
-
import numpy as np
|
2 |
-
|
3 |
from typing import Dict
|
4 |
|
5 |
-
import
|
6 |
import pyctcdecode
|
7 |
-
|
8 |
-
from transformers import
|
9 |
-
Wav2Vec2Processor,
|
10 |
-
Wav2Vec2ProcessorWithLM,
|
11 |
-
Wav2Vec2ForCTC,
|
12 |
-
)
|
13 |
|
14 |
|
15 |
-
class PreTrainedPipeline
|
16 |
|
17 |
def __init__(self, model_path: str, language_model_fp: str):
|
18 |
self.language_model_fp = language_model_fp
|
19 |
|
20 |
-
self.device =
|
21 |
self.model = Wav2Vec2ForCTC.from_pretrained(model_path)
|
22 |
self.model.to(self.device)
|
23 |
|
@@ -25,7 +19,9 @@ class PreTrainedPipeline():
|
|
25 |
self.sampling_rate = processor.feature_extractor.sampling_rate
|
26 |
|
27 |
vocab = processor.tokenizer.get_vocab()
|
28 |
-
sorted_vocab_dict = [
|
|
|
|
|
29 |
|
30 |
self.decoder = pyctcdecode.build_ctcdecoder(
|
31 |
labels=[x[0] for x in sorted_vocab_dict],
|
@@ -35,7 +31,7 @@ class PreTrainedPipeline():
|
|
35 |
self.processor_with_lm = Wav2Vec2ProcessorWithLM(
|
36 |
feature_extractor=processor.feature_extractor,
|
37 |
tokenizer=processor.tokenizer,
|
38 |
-
decoder=self.decoder
|
39 |
)
|
40 |
|
41 |
def __call__(self, inputs: np.array) -> Dict[str, str]:
|
@@ -49,9 +45,8 @@ class PreTrainedPipeline():
|
|
49 |
"""
|
50 |
|
51 |
input_values = self.processor_with_lm(
|
52 |
-
inputs, return_tensors="pt",
|
53 |
-
|
54 |
-
)['input_values']
|
55 |
|
56 |
input_values = input_values.to(self.device)
|
57 |
|
@@ -60,8 +55,6 @@ class PreTrainedPipeline():
|
|
60 |
model_outs = self.model(input_values)
|
61 |
logits = model_outs.logits.cpu().detach().numpy()
|
62 |
|
63 |
-
text_predicted = self.processor_with_lm.batch_decode(logits)[
|
64 |
|
65 |
-
return {
|
66 |
-
"text": text_predicted
|
67 |
-
}
|
|
|
|
|
|
|
1 |
from typing import Dict
|
2 |
|
3 |
+
import numpy as np
|
4 |
import pyctcdecode
|
5 |
+
import torch
|
6 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM
|
|
|
|
|
|
|
|
|
7 |
|
8 |
|
9 |
+
class PreTrainedPipeline:
|
10 |
|
11 |
def __init__(self, model_path: str, language_model_fp: str):
|
12 |
self.language_model_fp = language_model_fp
|
13 |
|
14 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
self.model = Wav2Vec2ForCTC.from_pretrained(model_path)
|
16 |
self.model.to(self.device)
|
17 |
|
|
|
19 |
self.sampling_rate = processor.feature_extractor.sampling_rate
|
20 |
|
21 |
vocab = processor.tokenizer.get_vocab()
|
22 |
+
sorted_vocab_dict = [
|
23 |
+
(char, ix) for char, ix in sorted(vocab.items(), key=lambda item: item[1])
|
24 |
+
]
|
25 |
|
26 |
self.decoder = pyctcdecode.build_ctcdecoder(
|
27 |
labels=[x[0] for x in sorted_vocab_dict],
|
|
|
31 |
self.processor_with_lm = Wav2Vec2ProcessorWithLM(
|
32 |
feature_extractor=processor.feature_extractor,
|
33 |
tokenizer=processor.tokenizer,
|
34 |
+
decoder=self.decoder,
|
35 |
)
|
36 |
|
37 |
def __call__(self, inputs: np.array) -> Dict[str, str]:
|
|
|
45 |
"""
|
46 |
|
47 |
input_values = self.processor_with_lm(
|
48 |
+
inputs, return_tensors="pt", sampling_rate=self.sampling_rate
|
49 |
+
)["input_values"]
|
|
|
50 |
|
51 |
input_values = input_values.to(self.device)
|
52 |
|
|
|
55 |
model_outs = self.model(input_values)
|
56 |
logits = model_outs.logits.cpu().detach().numpy()
|
57 |
|
58 |
+
text_predicted = self.processor_with_lm.batch_decode(logits)["text"]
|
59 |
|
60 |
+
return {"text": text_predicted}
|
|
|
|
requirements.txt
CHANGED
@@ -3,4 +3,5 @@ pyctcdecode==0.3.0
|
|
3 |
torch
|
4 |
torchaudio
|
5 |
librosa
|
|
|
6 |
https://github.com/kpu/kenlm/archive/master.zip
|
|
|
3 |
torch
|
4 |
torchaudio
|
5 |
librosa
|
6 |
+
gradio
|
7 |
https://github.com/kpu/kenlm/archive/master.zip
|