csm-1b-gradio / app_huggingface.py
alethanhson
fix
9605f46
raw
history blame contribute delete
10.9 kB
import base64
import io
import logging
from typing import List
import os
import sys
import numpy as np
import gradio as gr
# Import các module cần thiết
try:
import torch
import torchaudio
HAS_TORCH = True
except ImportError:
HAS_TORCH = False
logging.warning("PyTorch not available. Using mock generator.")
# Tạo lớp Mock để sử dụng khi không có PyTorch hoặc model bị lỗi
class MockGenerator:
def __init__(self):
self.sample_rate = 24000
logging.info("Created mock generator with sample rate 24000")
def generate(self, text, speaker, context=None, max_audio_length_ms=10000, temperature=0.9, topk=50):
# Tạo âm thanh giả - chỉ là silence với độ dài tỷ lệ với text
duration_seconds = min(len(text) * 0.1, max_audio_length_ms / 1000)
samples = int(duration_seconds * self.sample_rate)
logging.info(f"Generating mock audio with {samples} samples")
return np.zeros(samples, dtype=np.float32)
# Định nghĩa lớp Segment giả khi cần
class MockSegment:
def __init__(self, text, speaker, audio=None):
self.text = text
self.speaker = speaker
self.audio = audio if audio is not None else np.zeros(0, dtype=np.float32)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
generator = None
def initialize_model():
global generator
logger.info("Loading CSM 1B model...")
# Nếu không có PyTorch, sử dụng mock
if not HAS_TORCH:
logger.warning("PyTorch not available. Using mock generator.")
generator = MockGenerator()
return True
# Có PyTorch, thử tải model thật
try:
# Kiểm tra và tải các thư viện cần thiết
import sys
# Thêm thư mục hiện tại vào PATH để đảm bảo import được các module cần thiết
if os.getcwd() not in sys.path:
sys.path.append(os.getcwd())
# Thử import từ generator module (theo hướng dẫn chính thức)
try:
from generator import load_csm_1b, Segment
device = "cuda" if torch.cuda.is_available() else "cpu"
if device == "cpu":
logger.warning("GPU not available. Using CPU, performance may be slow!")
logger.info(f"Using device: {device}")
# Tải model theo cách chính thức
generator = load_csm_1b(device=device)
logger.info(f"Model loaded successfully on device: {device}")
return True
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
# Tải mock generator trong trường hợp lỗi
logger.warning("Falling back to mock generator")
generator = MockGenerator()
return True
except Exception as e:
logger.error(f"Critical error: {str(e)}")
generator = MockGenerator()
return True
def generate_speech(text, speaker_id, max_audio_length_ms=10000, temperature=0.9, topk=50, context_texts=None, context_speakers=None):
global generator
if generator is None:
if not initialize_model():
# Sử dụng mock generator nếu không khởi tạo được
generator = MockGenerator()
try:
# Xác định Segment class để sử dụng
try:
from generator import Segment
except ImportError:
Segment = MockSegment
# Xử lý context nếu có
context_segments = []
if context_texts and context_speakers:
for ctx_text, ctx_speaker in zip(context_texts, context_speakers):
if ctx_text and ctx_speaker is not None:
# Tạo audio tensor rỗng cho context
if HAS_TORCH:
audio_tensor = torch.zeros(0, dtype=torch.float32)
else:
audio_tensor = np.zeros(0, dtype=np.float32)
context_segments.append(
Segment(text=ctx_text, speaker=int(ctx_speaker), audio=audio_tensor)
)
# Generate audio từ text
audio = generator.generate(
text=text,
speaker=int(speaker_id),
context=context_segments,
max_audio_length_ms=float(max_audio_length_ms),
temperature=float(temperature),
topk=int(topk),
)
# Chuyển đổi tensor sang numpy array cho Gradio
if HAS_TORCH and isinstance(audio, torch.Tensor):
audio_numpy = audio.cpu().numpy()
else:
audio_numpy = audio # Đã là numpy từ MockGenerator
sample_rate = generator.sample_rate
return (sample_rate, audio_numpy), None
except Exception as e:
logger.error(f"Error generating audio: {str(e)}")
# Sử dụng mock generator trong trường hợp lỗi
mock_gen = MockGenerator()
audio = mock_gen.generate(text=text, speaker=int(speaker_id), max_audio_length_ms=float(max_audio_length_ms))
return (mock_gen.sample_rate, audio), f"Error generating audio, using silent audio: {str(e)}"
def clear_context():
return [], []
def add_context(text, speaker_id, context_texts, context_speakers):
if text and speaker_id is not None:
context_texts.append(text)
context_speakers.append(int(speaker_id))
return context_texts, context_speakers
def update_context_display(texts, speakers):
if not texts or not speakers:
return []
return [[text, speaker] for text, speaker in zip(texts, speakers)]
def create_demo():
# Set up Gradio interface
demo = gr.Blocks(title="CSM 1B Demo")
with demo:
gr.Markdown("# CSM 1B - Conversational Speech Model")
gr.Markdown("Enter text to generate natural-sounding speech with the CSM 1B model")
if not HAS_TORCH:
gr.Markdown("⚠️ **WARNING: PyTorch is not available. Using a mock generator that produces silent audio.**")
with gr.Row():
with gr.Column(scale=2):
text_input = gr.Textbox(
label="Text to convert to speech",
placeholder="Enter your text here...",
lines=3
)
speaker_id = gr.Slider(
label="Speaker ID",
minimum=0,
maximum=10,
step=1,
value=0
)
with gr.Accordion("Advanced Options", open=False):
max_length = gr.Slider(
label="Maximum length (milliseconds)",
minimum=1000,
maximum=30000,
step=1000,
value=10000
)
temp = gr.Slider(
label="Temperature",
minimum=0.1,
maximum=1.5,
step=0.1,
value=0.9
)
top_k = gr.Slider(
label="Top K",
minimum=10,
maximum=100,
step=10,
value=50
)
with gr.Accordion("Conversation Context", open=False):
context_list = gr.State([])
context_speakers_list = gr.State([])
with gr.Row():
context_text = gr.Textbox(label="Context text", lines=2)
context_speaker = gr.Slider(
label="Context speaker ID",
minimum=0,
maximum=10,
step=1,
value=0
)
with gr.Row():
add_ctx_btn = gr.Button("Add Context")
clear_ctx_btn = gr.Button("Clear All Context")
context_display = gr.Dataframe(
headers=["Text", "Speaker ID"],
label="Current Context",
interactive=False
)
generate_btn = gr.Button("Generate Audio", variant="primary")
with gr.Column(scale=1):
audio_output = gr.Audio(label="Generated Audio", type="numpy")
error_output = gr.Textbox(label="Error Message", visible=False)
# Connect events
generate_btn.click(
fn=generate_speech,
inputs=[
text_input,
speaker_id,
max_length,
temp,
top_k,
context_list,
context_speakers_list
],
outputs=[audio_output, error_output]
)
add_ctx_btn.click(
fn=add_context,
inputs=[
context_text,
context_speaker,
context_list,
context_speakers_list
],
outputs=[context_list, context_speakers_list]
).then(
fn=update_context_display,
inputs=[context_list, context_speakers_list],
outputs=[context_display]
)
clear_ctx_btn.click(
fn=clear_context,
inputs=[],
outputs=[context_list, context_speakers_list]
).then(
fn=lambda: [],
inputs=[],
outputs=[context_display]
)
gr.Markdown("""
## About CSM-1B
CSM (Conversational Speech Model) is a speech generation model from Sesame that generates audio from text inputs.
The model can generate a variety of voices and works best when provided with conversational context.
### Features:
- Generate natural-sounding speech from text
- Choose different speaker identities (0-10)
- Adjust temperature to control output variability
- Add conversation context for more natural responses
[View on Hugging Face](https://huggingface.co/sesame/csm-1b) | [GitHub Repository](https://github.com/SesameAILabs/csm)
""")
return demo
# Khởi tạo model
initialize_model()
# Tạo và khởi chạy demo
demo = create_demo()
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)