import argparse #test from src.eval.generate_samples import generate_samples if __name__ == "__main__": parser = argparse.ArgumentParser(description="Generate test samples from MMAU dataset") parser.add_argument('--model_path', type=str, required=True, help='Model checkpoint used for generation') parser.add_argument('--data_root', type=str, required=True, help='Dataset root path') parser.add_argument('--output_path', type=str, default="./output_videos", help='Video output path') parser.add_argument('--disable_null_model', action="store_true", default=False, help='For uncond noise preds, whether to use a null model') parser.add_argument('--use_factor_guidance', action="store_true", default=False, help='') parser.add_argument('--num_demo_samples', type=int, default=10, help='Number of samples to collect for generation') parser.add_argument('--max_output_vids', type=int, default=200, help='Exit program once this many videos have been generated') parser.add_argument('--num_gens_per_sample', type=int, default=1, help='Number videos to generate for each test case') parser.add_argument('--eval_output', action="store_true", default=False, help='') parser.add_argument('--seed', type=int, default=None, help='') parser.add_argument('--dataset', type=str, default="mmau") parser.add_argument( "--bbox_mask_idx_batch", nargs="+", type=int, default=[None], choices=list(range(25+1)), help="Where to start the masking, multiple values represent multiple different test cases for each sample", ) parser.add_argument( "--force_action_type_batch", nargs="+", type=int, default=[None], choices=[0, 1, 2, 3, 4], help="Which action type to force, multiple values represent multiple different test cases for each sample", ) parser.add_argument( "--guidance_scales", nargs="+", type=int, default=[(1, 9)], help="Guidance progression to use, multiple values represent multiple different test cases for each sample", ) args = parser.parse_args() generate_samples(args)