# nvidia-smi | grep 'python' | awk '{ print $5 }' | xargs -n1 kill -9 # User-specific paths and settings DATASET_PATH="" # e.g., "/home/datasets_root" NAME="" # e.g., "box2video_experiment1" OUT_DIR="/${NAME}" # e.g., "/home/results/${NAME}" PROJECT_NAME='' # e.g., 'car_crash' WANDB_ENTITY='' # Your Weights & Biases username PRETRAINED_MODEL_PATH="" # e.g., "/home/checkpoints_root/checkpoint" # export HF_HOME=/path/to/root # Where the SVD pretrained models are/will be downloaded # Create output directory mkdir -p $OUT_DIR # Save training script for reference SCRIPT_PATH=$0 SAVE_SCRIPT_PATH="${OUT_DIR}/train_scripts.sh" cp $SCRIPT_PATH $SAVE_SCRIPT_PATH echo "Saved script to ${SAVE_SCRIPT_PATH}" # Training command CUDA_LAUNCH_BLOCKING=1 accelerate launch --config_file config/multi_gpu.yaml train_video_controlnet.py \ --run_name $NAME \ --data_root $DATASET_PATH \ --project_name $PROJECT_NAME \ --pretrained_model_name_or_path $PRETRAINED_MODEL_PATH \ --output_dir $OUT_DIR \ --variant fp16 \ --dataset_name mmau \ --train_batch_size 1 \ --learning_rate 4e-5 \ --checkpoints_total_limit 3 \ --checkpointing_steps 300 \ --checkpointing_time 10620 \ --gradient_accumulation_steps 5 \ --validation_steps 300 \ --enable_gradient_checkpointing \ --lr_scheduler constant \ --report_to wandb \ --seed 1234 \ --mixed_precision fp16 \ --clip_length 25 \ --fps 6 \ --min_guidance_scale 1.0 \ --max_guidance_scale 3.0 \ --noise_aug_strength 0.01 \ --num_demo_samples 15 \ --num_train_epochs 10 \ --dataloader_num_workers 0 \ --resume_from_checkpoint latest \ --wandb_entity $WANDB_ENTITY \ --train_H 320 \ --train_W 512 \ --use_action_conditioning \ --contiguous_bbox_masking_prob 0.75 \ --contiguous_bbox_masking_start_ratio 0.0 \ --val_on_first_step