algomuffin commited on
Commit
bf4a1e6
·
1 Parent(s): e881062

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -31
app.py DELETED
@@ -1,31 +0,0 @@
1
- from sentence_transformers import SentenceTransformer, CrossEncoder, util
2
- import torch
3
- import pickle
4
- import pandas as pd
5
- import gradio as gr
6
- bi_encoder = SentenceTransformer("multi-qa-MiniLM-L6-cos-v1")
7
- cross_encoder = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")
8
- corpus_embeddings=pd.read_pickle("corpus_embeddings_cpu.pkl")
9
- corpus=pd.read_pickle("corpus.pkl")
10
- def search(query,top_k=100):
11
- print("Top 5 Answer by the NSE:")
12
- print()
13
- ans=[]
14
- ##### Sematic Search #####
15
- # Encode the query using the bi-encoder and find potentially relevant passages
16
- question_embedding = bi_encoder.encode(query, convert_to_tensor=True)
17
- hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k)
18
- hits = hits[0] # Get the hits for the first query
19
- ##### Re-Ranking #####
20
- # Now, score all retrieved passages with the cross_encoder
21
- cross_inp = [[query, corpus[hit['corpus_id']]] for hit in hits]
22
- cross_scores = cross_encoder.predict(cross_inp)
23
- # Sort results by the cross-encoder scores
24
- for idx in range(len(cross_scores)):
25
- hits[idx]['cross-score'] = cross_scores[idx]
26
- hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
27
-
28
- for idx, hit in enumerate(hits[0:5]):
29
- ans.append(corpus[hit['corpus_id']])
30
- return ans[0],ans[1],ans[2],ans[3],ans[4]
31
- iface = gr.Interface(fn=search, inputs=["text"], outputs=["textbox","textbox","textbox","textbox","textbox"]).launch(share=True)