File size: 5,382 Bytes
62f5cce
 
 
 
 
adfea12
fc652c4
68866fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62f5cce
 
68866fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc652c4
 
68866fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc652c4
68866fa
 
 
 
 
 
 
 
 
 
 
 
 
62f5cce
 
fc652c4
 
 
62f5cce
 
 
 
68866fa
a9c0e29
 
 
 
 
 
 
 
68866fa
 
 
 
 
 
a9c0e29
62f5cce
 
 
 
 
 
68866fa
 
fc652c4
 
 
 
 
68866fa
 
 
 
 
 
 
 
 
fc652c4
 
68866fa
 
 
 
 
 
 
 
 
62f5cce
 
 
e2e7f03
68866fa
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#!/usr/bin/env python

from __future__ import annotations

import os
import random
import tempfile
import sys

# Check critical dependencies before proceeding
try:
    import numpy as np
    import torch
    import gradio as gr
    import imageio
    from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
except ImportError as e:
    print(f"Error: Missing required dependency - {e}")
    print("Please ensure requirements.txt includes: numpy, torch, diffusers, gradio, imageio")
    sys.exit(1)

DESCRIPTION = '''# [ModelScope Text to Video Synthesis](https://modelscope.cn/models/damo/text-to-video-synthesis/summary)
<p>For Colab usage, you can view <a href="https://colab.research.google.com/drive/1uW1ZqswkQ9Z9bp5Nbo5z59cAn7I0hE6R?usp=sharing" style="text-decoration: underline;" target="_blank">this webpage</a>.</p>
<p>This model can only be used for non-commercial purposes. See the <a href="https://huggingface.co/damo-vilab/modelscope-damo-text-to-video-synthesis" style="text-decoration: underline;" target="_blank">model card</a>.</p>'''

if (SPACE_ID := os.getenv('SPACE_ID')) is not None:
    DESCRIPTION += f'''\n<p>For faster inference, you may duplicate this space and upgrade to GPU. 
    <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true">
    <img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a></p>'''

MAX_NUM_FRAMES = int(os.getenv('MAX_NUM_FRAMES', '64'))  # Reduced from 200 for stability
DEFAULT_NUM_FRAMES = min(MAX_NUM_FRAMES, 16)

# Initialize pipeline with error handling
try:
    pipe = DiffusionPipeline.from_pretrained(
        'damo-vilab/text-to-video-ms-1.7b',
        torch_dtype=torch.float16,
        variant='fp16'
    )
    pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
    pipe.enable_model_cpu_offload()
    pipe.enable_vae_slicing()
except Exception as e:
    print(f"Failed to initialize pipeline: {e}")
    print("This model requires significant GPU memory. Try a smaller model like 'cerspense/zeroscope_v2_576w' if needed.")
    sys.exit(1)

def to_video(frames: list[np.ndarray], fps: int) -> str:
    """Convert frames to video using imageio with FFMPEG."""
    try:
        out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
        writer = imageio.get_writer(out_file.name, format='FFMPEG', fps=fps)
        for frame in frames:
            writer.append_data(frame)
        writer.close()
        return out_file.name
    except Exception as e:
        print(f"Video creation failed: {e}")
        raise

def generate(prompt: str, seed: int, num_frames: int, num_inference_steps: int) -> str:
    """Generate video from text prompt."""
    if not prompt.strip():
        raise gr.Error("Please enter a valid prompt")
    
    seed = random.randint(0, 1000000) if seed == -1 else seed
    generator = torch.Generator().manual_seed(seed)
    
    try:
        frames = pipe(
            prompt,
            num_inference_steps=num_inference_steps,
            num_frames=num_frames,
            generator=generator
        ).frames
        return to_video(frames, 8)
    except torch.cuda.OutOfMemoryError:
        raise gr.Error("Out of GPU memory - Try reducing frame count or use a smaller model")
    except Exception as e:
        raise gr.Error(f"Generation failed: {str(e)}")

examples = [
    ['An astronaut riding a horse.', 0, 16, 25],
    ['A panda eating bamboo on a rock.', 0, 16, 25],
    ['Spiderman is surfing.', 0, 16, 25],
]

with gr.Blocks(css='style.css') as demo:
    gr.Markdown(DESCRIPTION)
    
    with gr.Group():
        with gr.Box():
            with gr.Row(elem_id='prompt-container').style(equal_height=True):
                prompt = gr.Text(
                    label='Prompt',
                    show_label=False,
                    max_lines=1,
                    placeholder='Enter your prompt',
                    elem_id='prompt-text-input'
                )
                run_button = gr.Button('Generate video')
        
        result = gr.Video(label='Result', show_label=False)
        
        with gr.Accordion('Advanced options', open=False):
            seed = gr.Slider(
                label='Seed',
                minimum=-1,
                maximum=1000000,
                step=1,
                value=-1,
                info='-1 = random seed each time'
            )
            num_frames = gr.Slider(
                label='Number of frames',
                minimum=16,
                maximum=MAX_NUM_FRAMES,
                step=1,
                value=DEFAULT_NUM_FRAMES,
                info='Higher values require more GPU memory'
            )
            num_inference_steps = gr.Slider(
                label='Inference steps',
                minimum=10,
                maximum=50,
                step=1,
                value=25
            )

    inputs = [prompt, seed, num_frames, num_inference_steps]
    
    gr.Examples(
        examples=examples,
        inputs=inputs,
        outputs=result,
        fn=generate,
        cache_examples=os.getenv('SYSTEM') == 'spaces'
    )

    prompt.submit(fn=generate, inputs=inputs, outputs=result)
    run_button.click(fn=generate, inputs=inputs, outputs=result)
    
    # Additional UI sections remain unchanged...
    
demo.queue(max_size=10).launch()