Spaces:
Runtime error
Runtime error
Update to use diffusers
Browse files- README.md +1 -1
- app.py +55 -32
- requirements.txt +8 -6
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 🚀
|
|
4 |
colorFrom: pink
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
|
|
4 |
colorFrom: pink
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.23.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
app.py
CHANGED
@@ -3,33 +3,14 @@
|
|
3 |
from __future__ import annotations
|
4 |
|
5 |
import os
|
6 |
-
import pathlib
|
7 |
import random
|
8 |
-
import
|
9 |
-
import subprocess
|
10 |
|
11 |
import gradio as gr
|
|
|
|
|
12 |
import torch
|
13 |
-
from
|
14 |
-
|
15 |
-
if os.getenv('SYSTEM') == 'spaces':
|
16 |
-
subprocess.run(shlex.split('pip uninstall -y modelscope'))
|
17 |
-
subprocess.run(
|
18 |
-
shlex.split('git clone https://github.com/modelscope/modelscope'),
|
19 |
-
cwd='/tmp',
|
20 |
-
env={'GIT_LFS_SKIP_SMUDGE': '1'})
|
21 |
-
subprocess.run(shlex.split('git checkout fe67395'), cwd='/tmp/modelscope')
|
22 |
-
subprocess.run(shlex.split('pip install .'), cwd='/tmp/modelscope')
|
23 |
-
|
24 |
-
from modelscope.outputs import OutputKeys
|
25 |
-
from modelscope.pipelines import pipeline
|
26 |
-
|
27 |
-
model_dir = pathlib.Path('weights')
|
28 |
-
if not model_dir.exists():
|
29 |
-
model_dir.mkdir()
|
30 |
-
snapshot_download('damo-vilab/modelscope-damo-text-to-video-synthesis',
|
31 |
-
repo_type='model',
|
32 |
-
local_dir=model_dir)
|
33 |
|
34 |
DESCRIPTION = '# [ModelScope Text to Video Synthesis](https://modelscope.cn/models/damo/text-to-video-synthesis/summary)'
|
35 |
DESCRIPTION += '\n<p>For Colab usage, you can view <a href="https://colab.research.google.com/drive/1uW1ZqswkQ9Z9bp5Nbo5z59cAn7I0hE6R?usp=sharing" style="text-decoration: underline;" target="_blank">this webpage</a>.(the latest update on 2023.03.21)</p>'
|
@@ -37,20 +18,43 @@ DESCRIPTION += '\n<p>This model can only be used for non-commercial purposes. To
|
|
37 |
if (SPACE_ID := os.getenv('SPACE_ID')) is not None:
|
38 |
DESCRIPTION += f'\n<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
|
39 |
|
40 |
-
|
|
|
|
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
if seed == -1:
|
45 |
seed = random.randint(0, 1000000)
|
46 |
-
torch.manual_seed(seed)
|
47 |
-
|
|
|
|
|
|
|
|
|
48 |
|
49 |
|
50 |
examples = [
|
51 |
-
['An astronaut riding a horse.', 0],
|
52 |
-
['A panda eating bamboo on a rock.', 0],
|
53 |
-
['Spiderman is surfing.', 0],
|
54 |
]
|
55 |
|
56 |
with gr.Blocks(css='style.css') as demo:
|
@@ -75,8 +79,27 @@ with gr.Blocks(css='style.css') as demo:
|
|
75 |
step=1,
|
76 |
value=-1,
|
77 |
info='If set to -1, a different seed will be used each time.')
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
gr.Examples(examples=examples,
|
81 |
inputs=inputs,
|
82 |
outputs=result,
|
|
|
3 |
from __future__ import annotations
|
4 |
|
5 |
import os
|
|
|
6 |
import random
|
7 |
+
import tempfile
|
|
|
8 |
|
9 |
import gradio as gr
|
10 |
+
import imageio
|
11 |
+
import numpy as np
|
12 |
import torch
|
13 |
+
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
DESCRIPTION = '# [ModelScope Text to Video Synthesis](https://modelscope.cn/models/damo/text-to-video-synthesis/summary)'
|
16 |
DESCRIPTION += '\n<p>For Colab usage, you can view <a href="https://colab.research.google.com/drive/1uW1ZqswkQ9Z9bp5Nbo5z59cAn7I0hE6R?usp=sharing" style="text-decoration: underline;" target="_blank">this webpage</a>.(the latest update on 2023.03.21)</p>'
|
|
|
18 |
if (SPACE_ID := os.getenv('SPACE_ID')) is not None:
|
19 |
DESCRIPTION += f'\n<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
|
20 |
|
21 |
+
MAX_NUM_FRAMES = int(os.getenv('MAX_NUM_FRAMES', '200'))
|
22 |
+
DEFAULT_NUM_FRAMES = min(MAX_NUM_FRAMES,
|
23 |
+
int(os.getenv('DEFAULT_NUM_FRAMES', '16')))
|
24 |
|
25 |
+
pipe = DiffusionPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b',
|
26 |
+
torch_dtype=torch.float16,
|
27 |
+
variant='fp16')
|
28 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
29 |
+
pipe.enable_model_cpu_offload()
|
30 |
+
pipe.enable_vae_slicing()
|
31 |
|
32 |
+
|
33 |
+
def to_video(frames: list[np.ndarray], fps: int) -> str:
|
34 |
+
out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
|
35 |
+
writer = imageio.get_writer(out_file.name, format='FFMPEG', fps=fps)
|
36 |
+
for frame in frames:
|
37 |
+
writer.append_data(frame)
|
38 |
+
writer.close()
|
39 |
+
return out_file.name
|
40 |
+
|
41 |
+
|
42 |
+
def generate(prompt: str, seed: int, num_frames: int,
|
43 |
+
num_inference_steps: int) -> str:
|
44 |
if seed == -1:
|
45 |
seed = random.randint(0, 1000000)
|
46 |
+
generator = torch.Generator().manual_seed(seed)
|
47 |
+
frames = pipe(prompt,
|
48 |
+
num_inference_steps=num_inference_steps,
|
49 |
+
num_frames=num_frames,
|
50 |
+
generator=generator).frames
|
51 |
+
return to_video(frames, 8)
|
52 |
|
53 |
|
54 |
examples = [
|
55 |
+
['An astronaut riding a horse.', 0, 16, 25],
|
56 |
+
['A panda eating bamboo on a rock.', 0, 16, 25],
|
57 |
+
['Spiderman is surfing.', 0, 16, 25],
|
58 |
]
|
59 |
|
60 |
with gr.Blocks(css='style.css') as demo:
|
|
|
79 |
step=1,
|
80 |
value=-1,
|
81 |
info='If set to -1, a different seed will be used each time.')
|
82 |
+
num_frames = gr.Slider(
|
83 |
+
label='Number of frames',
|
84 |
+
minimum=16,
|
85 |
+
maximum=MAX_NUM_FRAMES,
|
86 |
+
step=1,
|
87 |
+
value=16,
|
88 |
+
info=
|
89 |
+
'Note that the content of the video also changes when you change the number of frames.'
|
90 |
+
)
|
91 |
+
num_inference_steps = gr.Slider(label='Number of inference steps',
|
92 |
+
minimum=10,
|
93 |
+
maximum=50,
|
94 |
+
step=1,
|
95 |
+
value=25)
|
96 |
+
|
97 |
+
inputs = [
|
98 |
+
prompt,
|
99 |
+
seed,
|
100 |
+
num_frames,
|
101 |
+
num_inference_steps,
|
102 |
+
]
|
103 |
gr.Examples(examples=examples,
|
104 |
inputs=inputs,
|
105 |
outputs=result,
|
requirements.txt
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
gradio==3.
|
4 |
-
huggingface-hub==0.13.
|
5 |
-
|
6 |
-
|
|
|
|
|
|
1 |
+
accelerate==0.17.1
|
2 |
+
git+https://github.com/huggingface/diffusers@9dc8444
|
3 |
+
gradio==3.23.0
|
4 |
+
huggingface-hub==0.13.3
|
5 |
+
imageio[ffmpeg]==2.26.1
|
6 |
+
torch==2.0.0
|
7 |
+
torchvision==0.15.1
|
8 |
+
transformers==4.27.2
|