equation
Browse files- index.html +4 -5
index.html
CHANGED
|
@@ -40,7 +40,6 @@
|
|
| 40 |
if (!$(this).hasClass('selected')) {
|
| 41 |
|
| 42 |
$('.formula').hide(200);
|
| 43 |
-
$('.eq-des').hide(200);
|
| 44 |
$('.formula-list > a').removeClass('selected');
|
| 45 |
$(this).addClass('selected');
|
| 46 |
var target = $(this).attr('href');
|
|
@@ -418,7 +417,7 @@
|
|
| 418 |
<h2 class="title is-3">Adaptive Attack</h2>
|
| 419 |
|
| 420 |
<div class="columns is-centered">
|
| 421 |
-
<div class="column container">
|
| 422 |
<p>
|
| 423 |
Attackers can design adaptive attacks to try to bypass BEYOND when the attacker knows all the parameters of the model
|
| 424 |
and the detection strategy. For an SSL model with a feature extractor <equation-inline>f</equation-inline>, a projector $h$, and a classification head $g$,
|
|
@@ -459,14 +458,14 @@
|
|
| 459 |
|
| 460 |
<div class="columns is-centered">
|
| 461 |
<div class="column container">
|
| 462 |
-
<p class="
|
| 463 |
where $\displaystyle k$ represents the number of generated neighbors, $\displaystyle y_t$ is the target class, and $\displaystyle \mathcal{L}$ is the cross entropy loss function
|
| 464 |
</p>
|
| 465 |
-
<p class="
|
| 466 |
where $\displaystyle \mathcal{S}$ is the cosine similarity.
|
| 467 |
</p>
|
| 468 |
|
| 469 |
-
<p class="
|
| 470 |
where $\displaystyle \mathcal{L}_C$ indicates classifier's loss function, $\displaystyle y_t$ is the targeted class, and $\displaystyle \alpha$ refers to a hyperparameter.
|
| 471 |
</p>
|
| 472 |
</div>
|
|
|
|
| 40 |
if (!$(this).hasClass('selected')) {
|
| 41 |
|
| 42 |
$('.formula').hide(200);
|
|
|
|
| 43 |
$('.formula-list > a').removeClass('selected');
|
| 44 |
$(this).addClass('selected');
|
| 45 |
var target = $(this).attr('href');
|
|
|
|
| 417 |
<h2 class="title is-3">Adaptive Attack</h2>
|
| 418 |
|
| 419 |
<div class="columns is-centered">
|
| 420 |
+
<div class="column container formula">
|
| 421 |
<p>
|
| 422 |
Attackers can design adaptive attacks to try to bypass BEYOND when the attacker knows all the parameters of the model
|
| 423 |
and the detection strategy. For an SSL model with a feature extractor <equation-inline>f</equation-inline>, a projector $h$, and a classification head $g$,
|
|
|
|
| 458 |
|
| 459 |
<div class="columns is-centered">
|
| 460 |
<div class="column container">
|
| 461 |
+
<p class="formula label-loss">
|
| 462 |
where $\displaystyle k$ represents the number of generated neighbors, $\displaystyle y_t$ is the target class, and $\displaystyle \mathcal{L}$ is the cross entropy loss function
|
| 463 |
</p>
|
| 464 |
+
<p class="formula representation-loss" style="display: none">
|
| 465 |
where $\displaystyle \mathcal{S}$ is the cosine similarity.
|
| 466 |
</p>
|
| 467 |
|
| 468 |
+
<p class="formula total-loss" style="display: none;">
|
| 469 |
where $\displaystyle \mathcal{L}_C$ indicates classifier's loss function, $\displaystyle y_t$ is the targeted class, and $\displaystyle \alpha$ refers to a hyperparameter.
|
| 470 |
</p>
|
| 471 |
</div>
|