Lohia, Aditya
styling changes
eb9b354
raw
history blame contribute delete
13.2 kB
import os
import logging
import re
import gradio as gr
import base64
import io
from PIL import Image
from typing import Iterator
from gateway import request_generation
# Setup logging
logging.basicConfig(level=logging.INFO)
# CONSTANTS
# Get max new tokens from environment variable, if it is not set, default to 2048
MAX_NEW_TOKENS: int = int(os.getenv("MAX_NEW_TOKENS", 2048))
# Get max number of images to be passed in the prompt
MAX_NUM_IMAGES: int = int(os.getenv("MAX_NUM_IMAGES"))
if not MAX_NUM_IMAGES:
raise EnvironmentError("MAX_NUM_IMAGES is not set. Please set it to 1 or more.")
# Validate environment variables
CLOUD_GATEWAY_API = os.getenv("API_ENDPOINT")
if not CLOUD_GATEWAY_API:
raise EnvironmentError("API_ENDPOINT is not set.")
MODEL_NAME: str = os.getenv("MODEL_NAME")
if not MODEL_NAME:
raise EnvironmentError("MODEL_NAME is not set.")
# Get API Key
API_KEY = os.getenv("API_KEY")
if not API_KEY: # simple check to validate API Key
raise Exception("API Key not valid.")
# Create a header, avoid declaring multiple times
HEADER = {"x-api-key": f"{API_KEY}"}
def validate_media(message: str, chat_history: list = None) -> bool:
"""Validate the number of image files in the new message.
Args:
message (str): input message from the user
chat_history (list[tuple[str, str]]): entire chat history of the session
Returns:
bool: True if the number of image files is less than or equal to MAX_NUM_IMAGES, False otherwise
"""
image_count = sum(1 for path in message["files"])
# Check if there are <image> tags in the prompt and add count
image_count += message["text"].count("<image>")
if image_count > MAX_NUM_IMAGES:
gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images at a time.")
return False
# If there are files, check if they are images
if not all(
file.lower().endswith((".png", ".jpg", ".jpeg")) for file in message["files"]
):
gr.Warning("Only images are allowed. Format available: PNG, JPG, JPEG")
return False
return True
def encode_pil_to_base64(pil_image: Image.Image, format: str) -> str:
"""Encode a PIL image to base64 string.
Args:
pil_image (Image.Image): PIL image object
format (str): format to save the image, defaults to JPEG
Returns:
str: base64 encoded string of the image
"""
buffered = io.BytesIO()
# Handle potential transparency issues for JPEG or JPG
if format == "JPEG" and pil_image.mode in ("RGBA", "LA", "P"):
# Convert to RGB
pil_image = pil_image.convert("RGB")
# Define save arguments, including quality for JPEG
save_kwargs = {"format": format}
if format == "JPEG":
save_kwargs["quality"] = 85 # Adjust quality as needed (0-100)
try:
pil_image.save(buffered, **save_kwargs)
except Exception as e:
print(f"Error saving image to buffer with format {format}: {e}")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
# Determine the MIME type based on the format
mime_format_part = format.lower()
if mime_format_part == "jpeg":
mime_type = "image/jpeg"
elif mime_format_part == "png":
mime_type = "image/png"
else:
gr.Error(f"Unsupported image format: {format}")
return None
return f"data:{mime_type};base64,{img_str}"
def process_images(message: list) -> list[dict]:
"""Process images in the message.
Args:
message (list): message list containing text and files
Returns:
list[dict]: list of dictionaries containing text and image content
"""
content = []
# Iterate through the files in the message
for path in message:
pil_image = Image.open(path)
# Get the image format
image_format = pil_image.format.upper()
if image_format == "JPG":
image_format = "JPEG"
if image_format in ["JPEG", "PNG"]:
# Converting image to base64
base64_image_data = encode_pil_to_base64(pil_image, format=image_format)
content.append(
{"type": "image_url", "image_url": {"url": base64_image_data}}
)
return content
def extract_image_urls_from_tags(message):
"""Extract image URLs from the <image> tags in the message text.
Args:
message (str): message text containing <image> tags
Returns:
list[str]: list of image URLs extracted from the <image> tags
"""
# Extract all <image> tags from the message text using regex
image_urls = re.findall(r"<image>(.*?)</image>", message, re.IGNORECASE | re.DOTALL)
# Basic cleanup: strip whitespace from found URLs
image_urls = [url.strip() for url in image_urls]
return image_urls
def process_new_user_message(message: dict) -> list[dict]:
"""Process the new user message and return a list of dictionaries containing text and image content.
Args:
message (dict): message dictionary containing text and files
Returns:
list[dict]: list of dictionaries containing text and image content
"""
# Create the content list messages
messages = []
if message["text"]:
# Remove the <image> tags from the message text
prompt = re.sub(
r"<image>.*?</image>", "", message["text"], flags=re.DOTALL | re.IGNORECASE
).strip()
# If the message text is empty after removing <image> tags, return an empty list
if not prompt:
gr.Warning("Please insert a prompt.")
return []
# If the message text is not empty, append it to the content list
messages.append({"type": "text", "text": prompt})
# processing image urls within tags
image_urls = extract_image_urls_from_tags(message["text"])
for url in image_urls:
if not url or not url.lower().startswith(("http://", "https://")):
continue
# Append the image URL to the content list
messages.append({"type": "image_url", "image_url": {"url": url}})
if message["files"]:
# If there are files, process the images
image_content = process_images(message["files"])
# Append the image content to the messages list
messages.extend(image_content)
return messages
else:
# If there are no text parts, throw a gr.Warning to insert prompt and return nothing
gr.Warning("Please insert a prompt.")
return []
def run(
message: str,
chat_history: list,
system_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
frequency_penalty: float = 0.0,
presence_penalty: float = 0.0,
) -> Iterator[str]:
"""Send a request to backend, fetch the streaming responses and emit to the UI.
Args:
message (str): input message from the user
chat_history (list[tuple[str, str]]): entire chat history of the session
system_prompt (str): system prompt
max_new_tokens (int, optional): maximum number of tokens to generate, ignoring the number of tokens in the
prompt. Defaults to 1024.
temperature (float, optional): the value used to module the next token probabilities. Defaults to 0.6.
top_p (float, optional): if set to float<1, only the smallest set of most probable tokens with probabilities
that add up to top_p or higher are kept for generation. Defaults to 0.9.
top_k (int, optional): the number of highest probability vocabulary tokens to keep for top-k-filtering.
Defaults to 50.
repetition_penalty (float, optional): the parameter for repetition penalty. 1.0 means no penalty.
Defaults to 1.2.
Yields:
Iterator[str]: Streaming responses to the UI
"""
if not validate_media(message):
# If the number of image files is not valid, return an empty string
yield ""
return
messages = []
if system_prompt:
messages.append(
{"role": "system", "content": [{"type": "text", "text": system_prompt}]}
)
# Append the new user message if it returns anything other than empty string
content = process_new_user_message(message)
if content:
# Append the new user message to the messages list
messages.append({"role": "user", "content": content})
else:
# If the content is empty, return an empty string
yield ""
return
# sample method to yield responses from the llm model
outputs = []
for text in request_generation(
header=HEADER,
messages=messages,
max_new_tokens=max_new_tokens,
temperature=temperature,
presence_penalty=presence_penalty,
frequency_penalty=frequency_penalty,
cloud_gateway_api=CLOUD_GATEWAY_API,
model_name=MODEL_NAME,
):
outputs.append(text)
yield "".join(outputs)
examples = [
["Plan a three-day trip to Washington DC for Cherry Blossom Festival."],
["How many hours does it take a man to eat a Helicopter?"],
[
{
"text": "Write the matplotlib code to generate the same bar chart.",
"files": ["assets/sample-images/barchart.png"],
}
],
[
{
"text": "Describe the atmosphere of the scene.",
"files": ["assets/sample-images/06-1.png"],
}
],
[
{
"text": "Write a short story about what might have happened in this house.",
"files": ["assets/sample-images/08.png"],
}
],
[
{
"text": "Describe the creatures that would live in this world.",
"files": ["assets/sample-images/10.png"],
}
],
[
{
"text": "Read text in the image.",
"files": ["assets/sample-images/1.png"],
}
],
[
{
"text": "When is this ticket dated and how much did it cost?",
"files": ["assets/sample-images/2.png"],
}
],
[
{
"text": "Read the text in the image into markdown.",
"files": ["assets/sample-images/3.png"],
}
],
[
{
"text": "Evaluate this integral.",
"files": ["assets/sample-images/4.png"],
}
],
[
{
"text": "Caption this image",
"files": ["assets/sample-images/01.png"],
}
],
[
{
"text": "What's the sign says?",
"files": ["assets/sample-images/02.png"],
}
],
[
{
"text": "Compare and contrast the two images.",
"files": ["assets/sample-images/03.png"],
}
],
[
{
"text": "List all the objects in the image and their colors.",
"files": ["assets/sample-images/04.png"],
}
],
]
description = f"""
This Space is an Alpha release that demonstrates [Llama-4-Maverick](https://huggingface.co/meta-llama/Llama-4-Maverick-17B-128E-Instruct) model running on AMD MI300 infrastructure. The space is built with Meta Llama 4 [License](https://www.llama.com/llama4/license/). Feel free to play with it!
"""
demo = gr.ChatInterface(
fn=run,
type="messages",
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
textbox=gr.MultimodalTextbox(
file_types=["image"],
file_count="single" if MAX_NUM_IMAGES == 1 else "multiple",
autofocus=True,
placeholder="Type message, drop PNG/JPEG or use <image>URL</image>...",
),
multimodal=True,
additional_inputs=[
gr.Textbox(
label="System prompt",
# value="You are a highly capable AI assistant. Provide accurate, concise, and fact-based responses that are directly relevant to the user's query. Avoid speculation, ensure logical consistency, and maintain clarity in longer outputs.",
value="",
lines=3,
),
gr.Slider(
label="Max New Tokens",
minimum=1,
maximum=MAX_NEW_TOKENS,
step=1,
value=2048,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.3,
),
gr.Slider(
label="Frequency penalty",
minimum=-2.0,
maximum=2.0,
step=0.1,
value=0.0,
),
gr.Slider(
label="Presence penalty",
minimum=-2.0,
maximum=2.0,
step=0.1,
value=0.0,
),
],
stop_btn=False,
title="Llama-4 Maverick Instruct",
description=description,
fill_height=True,
run_examples_on_click=False,
examples=examples,
css_paths="style.css",
cache_examples=False,
)
if __name__ == "__main__":
demo.queue(
max_size=int(os.getenv("QUEUE")),
default_concurrency_limit=int(os.getenv("CONCURRENCY_LIMIT")),
).launch()