Spaces:
Sleeping
Sleeping
File size: 14,301 Bytes
10e9b7d eccf8e4 7d65c66 3c4371f 76ef0c8 d59f015 e80aab9 3db6293 76ef0c8 31243f4 d59f015 76ef0c8 4021bf3 76ef0c8 9af6c67 76ef0c8 9af6c67 76ef0c8 9af6c67 76ef0c8 9af6c67 76ef0c8 9af6c67 b90251f 31243f4 7d65c66 b177367 3c4371f 7e4a06b 1ca9f65 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 76ef0c8 31243f4 e80aab9 b177367 31243f4 9af6c67 31243f4 3c4371f 31243f4 b177367 36ed51a c1fd3d2 3c4371f 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 3c4371f 31243f4 e80aab9 31243f4 3c4371f 7d65c66 3c4371f 7d65c66 31243f4 e80aab9 b177367 7d65c66 3c4371f 31243f4 76ef0c8 31243f4 76ef0c8 7d65c66 76ef0c8 31243f4 76ef0c8 31243f4 b177367 7d65c66 3c4371f 31243f4 e80aab9 7d65c66 31243f4 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 3c4371f 31243f4 7d65c66 31243f4 3c4371f e80aab9 31243f4 7d65c66 31243f4 e80aab9 31243f4 0ee0419 e514fd7 81917a3 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 9088b99 7d65c66 e80aab9 31243f4 e80aab9 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 31243f4 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import time
from smolagents import CodeAgent, WikipediaSearchTool, DuckDuckGoSearchTool, OpenAIServerModel
from PIL import Image
from io import BytesIO
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
# class BasicAgent:
# def __init__(self):
# print("BasicAgent initialized.")
# def __call__(self, question: str) -> str:
# print(f"Agent received question (first 50 chars): {question[:50]}...")
# fixed_answer = "This is a default answer."
# print(f"Agent returning fixed answer: {fixed_answer}")
# return fixed_answer
def is_valid_image_pillow(file_name):
try:
with Image.open(file_name) as img:
img.verify() # Verify the image file
return True
except (IOError, SyntaxError):
return False
class myAgent:
def __init__(self):
print("myAgent initialized.")
self.agent = CodeAgent(
model = OpenAIServerModel(
model_id="gemini-2.0-flash-lite",
api_base="https://generativelanguage.googleapis.com/v1beta/openai/",
api_key=GEMINI_API_KEY,
),
tools=[DuckDuckGoSearchTool(), WikipediaSearchTool()],
add_base_tools=True,
# additional_authorized_imports=['pandas','numpy','csv']
)
def __call__(self, question: str, file_data=None) -> str: # Renamed img to file_data
print(f"Agent received question (first 50 chars): {question[:50]}...")
images_for_agent = [] # List to hold image objects
text_from_file = "" # String to hold text content from files
if file_data:
print(f"Agent received file data of size: {len(file_data)} bytes")
# Attempt to open as an image
try:
img_obj = Image.open(BytesIO(file_data))
img_obj.verify() # Verify if it's a valid image
images_for_agent.append(img_obj)
print("File identified as an image.")
except (IOError, SyntaxError):
print("File is not an image, attempting to decode as text.")
# If not an image, try to decode as text
try:
text_from_file = file_data.decode('utf-8')
# You might want to add more sophisticated parsing here for CSV/JSON/etc.
# For example, if it's a CSV:
# df = pd.read_csv(StringIO(text_from_file))
# text_from_file = df.to_string() # Convert DataFrame to string for agent
print(f"File decoded as text (first 200 chars): {text_from_file[:200]}...")
except UnicodeDecodeError:
text_from_file = f"Could not decode file as UTF-8 text. Raw bytes size: {len(file_data)}"
print("File could not be decoded as UTF-8 text.")
except Exception as e:
print(f"Unexpected error processing file data: {e}")
text_from_file = f"Error processing file: {e}"
# Combine question with file content if available
if text_from_file:
# You might want to prepend or append, or format this more intelligently
question_with_file_context = f"{question}\n\n[FILE CONTENT START]\n{text_from_file}\n[FILE CONTENT END]"
else:
question_with_file_context = question
# Pass images and the possibly augmented question to the CodeAgent
answer = self.agent.run(question_with_file_context, images=images_for_agent if images_for_agent else None)
time.sleep(5)
print(f"Agent returning answer: {answer}")
return answer
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
files_url = f"{api_url}/files"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = myAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
file_name = item.get("file_name")
file_content_to_pass = None # Initialize to None
if file_name:
# Fetch files
print(f"Fetching file '{file_name}' for task_id: {task_id}")
try:
response = requests.get(f'{files_url}/{task_id}', timeout=15, allow_redirects=True)
print("Response status code:", response.status_code)
if response.status_code == 404:
print(f"File not found for task_id {task_id}. Skipping file processing for this task.")
# Continue without a file, agent will still receive the question
else:
response.raise_for_status()
file_content_to_pass = response.content # Store the raw content
print(f"Fetched file for task_id {task_id}: {file_name} (size: {len(file_content_to_pass)} bytes)")
# Optional: Add specific handling for image files if your agent needs them
# The `img` parameter in `myAgent.__call__` suggests it's designed for images.
# If you want to pass image objects for image files, and raw content for others,
# you'll need to adapt how `myAgent` uses the `img` parameter.
# For now, we'll just pass the raw content.
except requests.exceptions.RequestException as e:
print(f"Error fetching file for task {task_id}: {e}. Agent will run without file.")
# Do not return here, allow agent to run with just the question if file fetch fails
except Exception as e:
print(f"An unexpected error occurred fetching file for task {task_id}: {e}. Agent will run without file.")
# Do not return here, allow agent to run with just the question if file fetch fails
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
# Pass file_content_to_pass to the agent.
# Your agent's __call__ method needs to be ready to handle
# raw byte content for the 'img' parameter, or you might
# rename it to something more generic like 'file_data'.
submitted_answer = agent(question_text, file_content_to_pass)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer, "File Name": file_name if file_name else "N/A"})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}", "File Name": file_name if file_name else "N/A"})
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |