Spaces:
Runtime error
Runtime error
Martijn van Beers
commited on
Commit
·
4f67e27
1
Parent(s):
66d5973
Add 'classic' rollout
Browse files- app.py +57 -19
- lib/ExplanationGenerator.py +10 -7
- lib/gradient_rollout.py +7 -53
- lib/integrated_gradients.py +6 -4
- lib/rollout.py +67 -0
app.py
CHANGED
|
@@ -8,27 +8,30 @@ sys.path.append("lib")
|
|
| 8 |
import torch
|
| 9 |
|
| 10 |
from roberta2 import RobertaForSequenceClassification
|
|
|
|
|
|
|
| 11 |
from gradient_rollout import GradientRolloutExplainer
|
|
|
|
| 12 |
from integrated_gradients import IntegratedGradientsExplainer
|
| 13 |
-
from transformers import AutoModelForSequenceClassification
|
| 14 |
-
from transformers import AutoTokenizer
|
| 15 |
-
from captum.attr import LayerIntegratedGradients
|
| 16 |
-
from captum.attr import visualization
|
| 17 |
-
import util
|
| 18 |
-
import torch
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
def run(sent, rollout, ig, ig_baseline):
|
| 24 |
-
a = gr_explainer(sent,
|
| 25 |
-
b =
|
| 26 |
-
|
|
|
|
| 27 |
|
| 28 |
examples = pandas.read_csv("examples.csv").to_numpy().tolist()
|
| 29 |
|
| 30 |
with gradio.Blocks(title="Explanations with attention rollout") as iface:
|
| 31 |
-
|
| 32 |
with gradio.Row(equal_height=True):
|
| 33 |
with gradio.Column(scale=4):
|
| 34 |
sent = gradio.Textbox(label="Input sentence")
|
|
@@ -36,19 +39,54 @@ with gradio.Blocks(title="Explanations with attention rollout") as iface:
|
|
| 36 |
but = gradio.Button("Submit")
|
| 37 |
with gradio.Row(equal_height=True):
|
| 38 |
with gradio.Column():
|
| 39 |
-
rollout_layer = gradio.Slider(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
rollout_result = gradio.HTML()
|
| 41 |
with gradio.Column():
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
| 44 |
ig_result = gradio.HTML()
|
| 45 |
gradio.Examples(examples, [sent])
|
| 46 |
with gradio.Accordion("Some more details"):
|
| 47 |
-
|
| 48 |
|
| 49 |
-
|
|
|
|
| 50 |
ig_layer.change(ig_explainer, [sent, ig_layer, ig_baseline], ig_result)
|
| 51 |
-
but.click(run,
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
|
| 54 |
iface.launch()
|
|
|
|
| 8 |
import torch
|
| 9 |
|
| 10 |
from roberta2 import RobertaForSequenceClassification
|
| 11 |
+
from transformers import AutoTokenizer
|
| 12 |
+
|
| 13 |
from gradient_rollout import GradientRolloutExplainer
|
| 14 |
+
from rollout import RolloutExplainer
|
| 15 |
from integrated_gradients import IntegratedGradientsExplainer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
| 18 |
+
model = RobertaForSequenceClassification.from_pretrained("textattack/roberta-base-SST-2").to(device)
|
| 19 |
+
tokenizer = AutoTokenizer.from_pretrained("textattack/roberta-base-SST-2")
|
| 20 |
+
|
| 21 |
+
ig_explainer = IntegratedGradientsExplainer(model, tokenizer)
|
| 22 |
+
gr_explainer = GradientRolloutExplainer(model, tokenizer)
|
| 23 |
+
ro_explainer = RolloutExplainer(model, tokenizer)
|
| 24 |
|
| 25 |
+
def run(sent, gradient, rollout, ig, ig_baseline):
|
| 26 |
+
a = gr_explainer(sent, gradient)
|
| 27 |
+
b = ro_explainer(sent, rollout)
|
| 28 |
+
c = ig_explainer(sent, ig, ig_baseline)
|
| 29 |
+
return a, b, c
|
| 30 |
|
| 31 |
examples = pandas.read_csv("examples.csv").to_numpy().tolist()
|
| 32 |
|
| 33 |
with gradio.Blocks(title="Explanations with attention rollout") as iface:
|
| 34 |
+
gradio.Markdown(pathlib.Path("description.md").read_text)
|
| 35 |
with gradio.Row(equal_height=True):
|
| 36 |
with gradio.Column(scale=4):
|
| 37 |
sent = gradio.Textbox(label="Input sentence")
|
|
|
|
| 39 |
but = gradio.Button("Submit")
|
| 40 |
with gradio.Row(equal_height=True):
|
| 41 |
with gradio.Column():
|
| 42 |
+
rollout_layer = gradio.Slider(
|
| 43 |
+
minimum=1,
|
| 44 |
+
maximum=12,
|
| 45 |
+
value=1,
|
| 46 |
+
step=1,
|
| 47 |
+
label="Select rollout start layer"
|
| 48 |
+
)
|
| 49 |
+
with gradio.Column():
|
| 50 |
+
gradient_layer = gradio.Slider(
|
| 51 |
+
minimum=1,
|
| 52 |
+
maximum=12,
|
| 53 |
+
value=8,
|
| 54 |
+
step=1,
|
| 55 |
+
label="Select gradient rollout start layer"
|
| 56 |
+
)
|
| 57 |
+
with gradio.Column():
|
| 58 |
+
ig_layer = gradio.Slider(
|
| 59 |
+
minimum=0,
|
| 60 |
+
maximum=12,
|
| 61 |
+
value=0,
|
| 62 |
+
step=1,
|
| 63 |
+
label="Select IG layer"
|
| 64 |
+
)
|
| 65 |
+
ig_baseline = gradio.Dropdown(
|
| 66 |
+
label="Baseline token",
|
| 67 |
+
choices=['Unknown', 'Padding'], value="Unknown"
|
| 68 |
+
)
|
| 69 |
+
with gradio.Row(equal_height=True):
|
| 70 |
+
with gradio.Column():
|
| 71 |
+
gradio.Markdown("### Attention Rollout")
|
| 72 |
rollout_result = gradio.HTML()
|
| 73 |
with gradio.Column():
|
| 74 |
+
gradio.Markdown("### Gradient-weighted Attention Rollout")
|
| 75 |
+
gradient_result = gradio.HTML()
|
| 76 |
+
with gradio.Column():
|
| 77 |
+
gradio.Markdown("### Layer-Integrated Gradients")
|
| 78 |
ig_result = gradio.HTML()
|
| 79 |
gradio.Examples(examples, [sent])
|
| 80 |
with gradio.Accordion("Some more details"):
|
| 81 |
+
gradio.Markdown(pathlib.Path("notice.md").read_text)
|
| 82 |
|
| 83 |
+
gradient_layer.change(gr_explainer, [sent, gradient_layer], gradient_result)
|
| 84 |
+
rollout_layer.change(ro_explainer, [sent, rollout_layer], rollout_result)
|
| 85 |
ig_layer.change(ig_explainer, [sent, ig_layer, ig_baseline], ig_result)
|
| 86 |
+
but.click(run,
|
| 87 |
+
inputs=[sent, gradient_layer, rollout_layer, ig_layer, ig_baseline],
|
| 88 |
+
outputs=[gradient_result, rollout_result, ig_result]
|
| 89 |
+
)
|
| 90 |
|
| 91 |
|
| 92 |
iface.launch()
|
lib/ExplanationGenerator.py
CHANGED
|
@@ -25,8 +25,8 @@ class Generator:
|
|
| 25 |
self.key = key
|
| 26 |
self.model.eval()
|
| 27 |
|
| 28 |
-
def
|
| 29 |
-
return self.
|
| 30 |
|
| 31 |
def _calculate_gradients(self, output, index, do_relprop=True):
|
| 32 |
if index == None:
|
|
@@ -72,7 +72,6 @@ class Generator:
|
|
| 72 |
rollout[:, 0, 0] = rollout[:, 0].min()
|
| 73 |
return rollout[:, 0]
|
| 74 |
|
| 75 |
-
|
| 76 |
def generate_LRP_last_layer(self, input_ids, attention_mask,
|
| 77 |
index=None):
|
| 78 |
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
|
@@ -117,7 +116,7 @@ class Generator:
|
|
| 117 |
all_layer_attentions.append(avg_heads)
|
| 118 |
rollout = compute_rollout_attention(all_layer_attentions, start_layer=start_layer)
|
| 119 |
rollout[:, 0, 0] = 0
|
| 120 |
-
return rollout[:, 0]
|
| 121 |
|
| 122 |
def generate_attn_gradcam(self, input_ids, attention_mask, index=None):
|
| 123 |
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
|
@@ -148,12 +147,14 @@ class Generator:
|
|
| 148 |
return torch.matmul(cam_ss, R_ss)
|
| 149 |
|
| 150 |
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
| 151 |
-
|
|
|
|
| 152 |
|
| 153 |
num_tokens = input_ids.size(-1)
|
| 154 |
R = torch.eye(num_tokens).expand(output.size(0), -1, -1).clone().to(output.device)
|
| 155 |
|
| 156 |
-
|
|
|
|
| 157 |
if i < start_layer:
|
| 158 |
continue
|
| 159 |
grad = blk.attention.self.get_attn_gradients().detach()
|
|
@@ -161,5 +162,7 @@ class Generator:
|
|
| 161 |
cam = avg_heads(cam, grad)
|
| 162 |
joint = apply_self_attention_rules(R, cam)
|
| 163 |
R += joint
|
| 164 |
-
|
|
|
|
|
|
|
| 165 |
|
|
|
|
| 25 |
self.key = key
|
| 26 |
self.model.eval()
|
| 27 |
|
| 28 |
+
def tokens_from_ids(self, ids):
|
| 29 |
+
return list(map(lambda s: s[1:] if s[0] == "Ġ" else s, self.tokenizer.convert_ids_to_tokens(ids)))
|
| 30 |
|
| 31 |
def _calculate_gradients(self, output, index, do_relprop=True):
|
| 32 |
if index == None:
|
|
|
|
| 72 |
rollout[:, 0, 0] = rollout[:, 0].min()
|
| 73 |
return rollout[:, 0]
|
| 74 |
|
|
|
|
| 75 |
def generate_LRP_last_layer(self, input_ids, attention_mask,
|
| 76 |
index=None):
|
| 77 |
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
|
|
|
| 116 |
all_layer_attentions.append(avg_heads)
|
| 117 |
rollout = compute_rollout_attention(all_layer_attentions, start_layer=start_layer)
|
| 118 |
rollout[:, 0, 0] = 0
|
| 119 |
+
return output, rollout[:, 0]
|
| 120 |
|
| 121 |
def generate_attn_gradcam(self, input_ids, attention_mask, index=None):
|
| 122 |
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
|
|
|
| 147 |
return torch.matmul(cam_ss, R_ss)
|
| 148 |
|
| 149 |
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
| 150 |
+
|
| 151 |
+
self._calculate_gradients(output, index, do_relprop=False)
|
| 152 |
|
| 153 |
num_tokens = input_ids.size(-1)
|
| 154 |
R = torch.eye(num_tokens).expand(output.size(0), -1, -1).clone().to(output.device)
|
| 155 |
|
| 156 |
+
blocks = _get_module_from_name(self.model, self.key)
|
| 157 |
+
for i, blk in enumerate(blocks):
|
| 158 |
if i < start_layer:
|
| 159 |
continue
|
| 160 |
grad = blk.attention.self.get_attn_gradients().detach()
|
|
|
|
| 162 |
cam = avg_heads(cam, grad)
|
| 163 |
joint = apply_self_attention_rules(R, cam)
|
| 164 |
R += joint
|
| 165 |
+
# 0 because we look at the influence *on* the CLS token
|
| 166 |
+
# 1:-1 because we don't want the influence *from* the CLS/SEP tokens
|
| 167 |
+
return output, R[:, 0, 1:-1]
|
| 168 |
|
lib/gradient_rollout.py
CHANGED
|
@@ -4,68 +4,22 @@ from captum.attr import visualization
|
|
| 4 |
|
| 5 |
from roberta2 import RobertaForSequenceClassification
|
| 6 |
from util import visualize_text, PyTMinMaxScalerVectorized
|
|
|
|
| 7 |
|
| 8 |
classifications = ["NEGATIVE", "POSITIVE"]
|
| 9 |
|
| 10 |
-
class GradientRolloutExplainer:
|
| 11 |
-
def __init__(self):
|
| 12 |
-
|
| 13 |
-
self.
|
| 14 |
-
self.
|
| 15 |
-
self.tokenizer = AutoTokenizer.from_pretrained("textattack/roberta-base-SST-2")
|
| 16 |
-
|
| 17 |
-
def tokens_from_ids(self, ids):
|
| 18 |
-
return list(map(lambda s: s[1:] if s[0] == "Ġ" else s, self.tokenizer.convert_ids_to_tokens(ids)))
|
| 19 |
-
|
| 20 |
-
def run_attribution_model(self, input_ids, attention_mask, index=None, start_layer=0):
|
| 21 |
-
def avg_heads(cam, grad):
|
| 22 |
-
cam = (grad * cam).clamp(min=0).mean(dim=-3)
|
| 23 |
-
# set negative values to 0, then average
|
| 24 |
-
# cam = cam.clamp(min=0).mean(dim=0)
|
| 25 |
-
return cam
|
| 26 |
-
|
| 27 |
-
def apply_self_attention_rules(R_ss, cam_ss):
|
| 28 |
-
R_ss_addition = torch.matmul(cam_ss, R_ss)
|
| 29 |
-
return R_ss_addition
|
| 30 |
-
|
| 31 |
-
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
| 32 |
-
if index == None:
|
| 33 |
-
# index = np.expand_dims(np.arange(input_ids.shape[1])
|
| 34 |
-
# by default explain the class with the highest score
|
| 35 |
-
index = output.argmax(axis=-1).detach().cpu().numpy()
|
| 36 |
-
|
| 37 |
-
# create a one-hot vector selecting class we want explanations for
|
| 38 |
-
one_hot = (
|
| 39 |
-
torch.nn.functional.one_hot(
|
| 40 |
-
torch.tensor(index, dtype=torch.int64), num_classes=output.size(-1)
|
| 41 |
-
)
|
| 42 |
-
.to(torch.float)
|
| 43 |
-
.requires_grad_(True)
|
| 44 |
-
).to(self.device)
|
| 45 |
-
one_hot = torch.sum(one_hot * output)
|
| 46 |
-
self.model.zero_grad()
|
| 47 |
-
# create the gradients for the class we're interested in
|
| 48 |
-
one_hot.backward(retain_graph=True)
|
| 49 |
-
|
| 50 |
-
num_tokens = self.model.roberta.encoder.layer[0].attention.self.get_attn().shape[-1]
|
| 51 |
-
R = torch.eye(num_tokens).expand(output.size(0), -1, -1).clone().to(self.device)
|
| 52 |
-
|
| 53 |
-
for i, blk in enumerate(self.model.roberta.encoder.layer):
|
| 54 |
-
if i < start_layer:
|
| 55 |
-
continue
|
| 56 |
-
grad = blk.attention.self.get_attn_gradients()
|
| 57 |
-
cam = blk.attention.self.get_attn()
|
| 58 |
-
cam = avg_heads(cam, grad)
|
| 59 |
-
joint = apply_self_attention_rules(R, cam)
|
| 60 |
-
R += joint
|
| 61 |
-
return output, R[:, 0, 1:-1]
|
| 62 |
|
| 63 |
def build_visualization(self, input_ids, attention_mask, index=None, start_layer=8):
|
| 64 |
# generate an explanation for the input
|
| 65 |
vis_data_records = []
|
| 66 |
|
| 67 |
for index in range(2):
|
| 68 |
-
output, expl = self.
|
| 69 |
input_ids, attention_mask, index=index, start_layer=start_layer
|
| 70 |
)
|
| 71 |
# normalize scores
|
|
|
|
| 4 |
|
| 5 |
from roberta2 import RobertaForSequenceClassification
|
| 6 |
from util import visualize_text, PyTMinMaxScalerVectorized
|
| 7 |
+
from ExplanationGenerator import Generator
|
| 8 |
|
| 9 |
classifications = ["NEGATIVE", "POSITIVE"]
|
| 10 |
|
| 11 |
+
class GradientRolloutExplainer(Generator):
|
| 12 |
+
def __init__(self, model, tokenizer):
|
| 13 |
+
super().__init__(model, key="roberta.encoder.layer")
|
| 14 |
+
self.device = model.device
|
| 15 |
+
self.tokenizer = tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
def build_visualization(self, input_ids, attention_mask, index=None, start_layer=8):
|
| 18 |
# generate an explanation for the input
|
| 19 |
vis_data_records = []
|
| 20 |
|
| 21 |
for index in range(2):
|
| 22 |
+
output, expl = self.generate_rollout_attn_gradcam(
|
| 23 |
input_ids, attention_mask, index=index, start_layer=start_layer
|
| 24 |
)
|
| 25 |
# normalize scores
|
lib/integrated_gradients.py
CHANGED
|
@@ -6,15 +6,17 @@ from transformers import AutoTokenizer
|
|
| 6 |
from captum.attr import LayerIntegratedGradients
|
| 7 |
from captum.attr import visualization
|
| 8 |
|
|
|
|
|
|
|
| 9 |
from util import visualize_text
|
| 10 |
|
| 11 |
classifications = ["NEGATIVE", "POSITIVE"]
|
| 12 |
|
| 13 |
class IntegratedGradientsExplainer:
|
| 14 |
-
def __init__(self):
|
| 15 |
-
self.
|
| 16 |
-
self.
|
| 17 |
-
self.tokenizer =
|
| 18 |
self.baseline_map = {
|
| 19 |
'Unknown': self.tokenizer.unk_token_id,
|
| 20 |
'Padding': self.tokenizer.pad_token_id,
|
|
|
|
| 6 |
from captum.attr import LayerIntegratedGradients
|
| 7 |
from captum.attr import visualization
|
| 8 |
|
| 9 |
+
from roberta2 import RobertaForSequenceClassification
|
| 10 |
+
from ExplanationGenerator import Generator
|
| 11 |
from util import visualize_text
|
| 12 |
|
| 13 |
classifications = ["NEGATIVE", "POSITIVE"]
|
| 14 |
|
| 15 |
class IntegratedGradientsExplainer:
|
| 16 |
+
def __init__(self, model, tokenizer):
|
| 17 |
+
self.model = model
|
| 18 |
+
self.device = model.device
|
| 19 |
+
self.tokenizer = tokenizer
|
| 20 |
self.baseline_map = {
|
| 21 |
'Unknown': self.tokenizer.unk_token_id,
|
| 22 |
'Padding': self.tokenizer.pad_token_id,
|
lib/rollout.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoTokenizer
|
| 3 |
+
from captum.attr import visualization
|
| 4 |
+
|
| 5 |
+
from roberta2 import RobertaForSequenceClassification
|
| 6 |
+
from ExplanationGenerator import Generator
|
| 7 |
+
from util import visualize_text, PyTMinMaxScalerVectorized
|
| 8 |
+
|
| 9 |
+
classifications = ["NEGATIVE", "POSITIVE"]
|
| 10 |
+
|
| 11 |
+
class RolloutExplainer(Generator):
|
| 12 |
+
def __init__(self, model, tokenizer):
|
| 13 |
+
super().__init__(model, key="roberta.encoder.layer")
|
| 14 |
+
self.device = model.device
|
| 15 |
+
self.tokenizer = tokenizer
|
| 16 |
+
|
| 17 |
+
def build_visualization(self, input_ids, attention_mask, start_layer=8):
|
| 18 |
+
# generate an explanation for the input
|
| 19 |
+
vis_data_records = []
|
| 20 |
+
|
| 21 |
+
output, expl = self.generate_rollout(
|
| 22 |
+
input_ids, attention_mask, start_layer=start_layer
|
| 23 |
+
)
|
| 24 |
+
# normalize scores
|
| 25 |
+
scaler = PyTMinMaxScalerVectorized()
|
| 26 |
+
|
| 27 |
+
norm = scaler(expl)
|
| 28 |
+
# get the model classification
|
| 29 |
+
output = torch.nn.functional.softmax(output, dim=-1)
|
| 30 |
+
|
| 31 |
+
for record in range(input_ids.size(0)):
|
| 32 |
+
classification = output[record].argmax(dim=-1).item()
|
| 33 |
+
class_name = classifications[classification]
|
| 34 |
+
nrm = norm[record]
|
| 35 |
+
|
| 36 |
+
# if the classification is negative, higher explanation scores are more negative
|
| 37 |
+
# flip for visualization
|
| 38 |
+
if class_name == "NEGATIVE":
|
| 39 |
+
nrm *= -1
|
| 40 |
+
tokens = self.tokens_from_ids(input_ids[record].flatten())[
|
| 41 |
+
1 : 0 - ((attention_mask[record] == 0).sum().item() + 1)
|
| 42 |
+
]
|
| 43 |
+
vis_data_records.append(
|
| 44 |
+
visualization.VisualizationDataRecord(
|
| 45 |
+
nrm,
|
| 46 |
+
output[record][classification],
|
| 47 |
+
classification,
|
| 48 |
+
classification,
|
| 49 |
+
classification,
|
| 50 |
+
1,
|
| 51 |
+
tokens,
|
| 52 |
+
1,
|
| 53 |
+
)
|
| 54 |
+
)
|
| 55 |
+
return visualize_text(vis_data_records)
|
| 56 |
+
|
| 57 |
+
def __call__(self, input_text, start_layer=8):
|
| 58 |
+
if start_layer > 0:
|
| 59 |
+
start_layer -= 1
|
| 60 |
+
|
| 61 |
+
text_batch = [input_text]
|
| 62 |
+
encoding = self.tokenizer(text_batch, return_tensors="pt")
|
| 63 |
+
input_ids = encoding["input_ids"].to(self.device)
|
| 64 |
+
attention_mask = encoding["attention_mask"].to(self.device)
|
| 65 |
+
|
| 66 |
+
return self.build_visualization(input_ids, attention_mask, start_layer=int(start_layer))
|
| 67 |
+
|