File size: 11,030 Bytes
592f71e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import os
import torch
import logging
import math
import argparse
import copy

import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import transformers

from torch import nn
from torch.nn import DataParallel
from transformers import BertModel, BertTokenizer

from .data_utils import build_batch, LoggingHandler, get_examples, get_qa_examples

from datetime import datetime
from tqdm import tqdm
from transformers import *
from nltk.tokenize import word_tokenize
from sklearn.metrics import precision_recall_fscore_support

#os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
#os.environ["CUDA_VISIBLE_DEVICES"] = "8,15"


class PassageRanker(nn.Module):
    """Performs prediction, given the input of BERT embeddings.
    """

    def __init__(self, model_path=None, gpu=True, label_num=2, batch_size=16):
        super(PassageRanker, self).__init__()

        lm = 'bert-large-cased'

        if model_path is not None:
            configuration = AutoConfig.from_pretrained(lm)
            self.language_model = BertModel(configuration)
        else:
            self.language_model = AutoModel.from_pretrained(lm)

        self.language_model = DataParallel(self.language_model)

        self.tokenizer = AutoTokenizer.from_pretrained(lm)
        self.vdim = 1024
        self.max_length = 256

        self.classification_head = nn.Linear(self.vdim, label_num)
        self.gpu = gpu
        self.batch_size = batch_size

        # load trained model
        if model_path is not None:
            if gpu:
                sdict = torch.load(model_path)
                self.load_state_dict(sdict, strict=False)
                self.to('cuda')
            else:
                sdict = torch.load(model_path, map_location=lambda storage, loc: storage)
                self.load_state_dict(sdict, strict=False)
        else:
            if self.gpu:
                self.to('cuda')

    def load_model(self, sdict):
        if self.gpu:
            self.load_state_dict(sdict)
            self.to('cuda')
        else:
            self.load_state_dict(sdict)

    def forward(self, sent_pair_list):
        all_probs = None
        for batch_idx in range(0, len(sent_pair_list), self.batch_size):
            probs = self.ff(sent_pair_list[batch_idx:batch_idx + self.batch_size]).data.cpu().numpy()
            if all_probs is None:
                all_probs = probs
            else:
                all_probs = np.append(all_probs, probs, axis=0)
        labels = []
        for pp in all_probs:
            ll = np.argmax(pp)
            if ll == 0:
                labels.append('relevant')
            else:
                labels.append('irrelevant')
        return labels, all_probs

    def ff(self, sent_pair_list):
        ids, types, masks = build_batch(self.tokenizer, sent_pair_list, max_len=self.max_length)
        if ids is None:
            return None
        ids_tensor = torch.tensor(ids)
        types_tensor = torch.tensor(types)
        masks_tensor = torch.tensor(masks)

        if self.gpu:
            ids_tensor = ids_tensor.to('cuda')
            types_tensor = types_tensor.to('cuda')
            masks_tensor = masks_tensor.to('cuda')
            # self.bert.to('cuda')
            # self.nli_head.to('cuda')

        cls_vecs = self.language_model(input_ids=ids_tensor, token_type_ids=types_tensor, attention_mask=masks_tensor)[1]
        logits = self.classification_head(cls_vecs)
        predict_probs = F.log_softmax(logits, dim=1)
        return predict_probs

    def save(self, output_path, config_dic=None, acc=None):
        if acc is None:
            model_name = 'qa_ranker.state_dict'
        else:
            model_name = 'qa_ranker_acc{}.state_dict'.format(acc)
        opath = os.path.join(output_path, model_name)
        if config_dic is None:
            torch.save(self.state_dict(), opath)
        else:
            torch.save(config_dic, opath)

    @staticmethod
    def load(input_path, gpu=True, label_num=2, batch_size=16):
        if gpu:
            sdict = torch.load(input_path)
        else:
            sdict = torch.load(input_path, map_location=lambda storage, loc: storage)
        model = PassageRanker(gpu=gpu, label_num=label_num, batch_size=batch_size)
        model.load_state_dict(sdict)
        return model


def get_scheduler(optimizer, scheduler: str, warmup_steps: int, t_total: int):
    """
    Returns the correct learning rate scheduler
    """
    scheduler = scheduler.lower()
    if scheduler == 'constantlr':
        return transformers.optimization.get_constant_schedule(optimizer)
    elif scheduler == 'warmupconstant':
        return transformers.optimization.get_constant_schedule_with_warmup(optimizer, warmup_steps)
    elif scheduler == 'warmuplinear':
        return transformers.optimization.get_linear_schedule_with_warmup(optimizer, warmup_steps, t_total)
    elif scheduler == 'warmupcosine':
        return transformers.optimization.get_cosine_schedule_with_warmup(optimizer, warmup_steps, t_total)
    elif scheduler == 'warmupcosinewithhardrestarts':
        return transformers.optimization.get_cosine_with_hard_restarts_schedule_with_warmup(optimizer, warmup_steps,
                                                                                            t_total)
    else:
        raise ValueError("Unknown scheduler {}".format(scheduler))


def train(model, optimizer, scheduler, train_data, dev_data, batch_size, fp16, gpu,
          max_grad_norm, best_acc, model_save_path):
    loss_fn = nn.CrossEntropyLoss()
    model.train()

    step_cnt = 0
    for pointer in tqdm(range(0, len(train_data), batch_size), desc='training'):
        step_cnt += 1
        sent_pairs = []
        labels = []
        for i in range(pointer, pointer + batch_size):
            if i >= len(train_data):
                break
            sents = train_data[i].get_texts()
            sent_pairs.append(sents)
            labels.append(train_data[i].get_label())
        predicted_probs = model.ff(sent_pairs)
        if predicted_probs is None:
            continue
        true_labels = torch.LongTensor(labels)
        if gpu:
            true_labels = true_labels.to('cuda')
        loss = loss_fn(predicted_probs, true_labels)
        if fp16:
            with amp.scale_loss(loss, optimizer) as scaled_loss:
                scaled_loss.backward()
            torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), max_grad_norm)
        else:
            loss.backward()
            torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)

        optimizer.step()
        scheduler.step()
        optimizer.zero_grad()

        if step_cnt % 5000 == 0:
            acc = evaluate(model, dev_data, mute=True)
            logging.info('==> step {} dev acc: {}'.format(step_cnt, acc))
            model.train()  # model was in eval mode in evaluate(); re-activate the train mode
            if acc > best_acc:
                best_acc = acc
                logging.info('Saving model...')
                model.save(model_save_path, model.state_dict())

    return best_acc


def parse_args():
    ap = argparse.ArgumentParser("arguments for bert-nli training")
    ap.add_argument('-b', '--batch_size', type=int, default=128, help='batch size')
    ap.add_argument('-ep', '--epoch_num', type=int, default=10, help='epoch num')
    ap.add_argument('--fp16', type=int, default=0, help='use apex mixed precision training (1) or not (0)')
    ap.add_argument('--gpu', type=int, default=1, help='use gpu (1) or not (0)')
    ap.add_argument('-ss', '--scheduler_setting', type=str, default='WarmupLinear',
                    choices=['WarmupLinear', 'ConstantLR', 'WarmupConstant', 'WarmupCosine',
                             'WarmupCosineWithHardRestarts'])
    ap.add_argument('-mg', '--max_grad_norm', type=float, default=1., help='maximum gradient norm')
    ap.add_argument('-wp', '--warmup_percent', type=float, default=0.1,
                    help='how many percentage of steps are used for warmup')

    args = ap.parse_args()
    return args.batch_size, args.epoch_num, args.fp16, args.gpu, args.scheduler_setting, args.max_grad_norm, args.warmup_percent


def evaluate(model, test_data, mute=False):
    model.eval()
    sent_pairs = [test_data[i].get_texts() for i in range(len(test_data))]
    all_labels = [test_data[i].get_label() for i in range(len(test_data))]
    _, probs = model(sent_pairs)
    all_predict = [np.argmax(pp) for pp in probs]
    assert len(all_predict) == len(all_labels)

    acc = len([i for i in range(len(all_labels)) if all_predict[i] == all_labels[i]]) * 1. / len(all_labels)
    prf = precision_recall_fscore_support(all_labels, all_predict, average=None, labels=[0, 1])

    if not mute:
        print('==>acc<==', acc)
        print('label meanings: 0: relevant, 1: irrelevant')
        print('==>precision-recall-f1<==\n', prf)

    return acc


if __name__ == '__main__':

    batch_size, epoch_num, fp16, gpu, scheduler_setting, max_grad_norm, warmup_percent = parse_args()
    fp16 = bool(fp16)
    gpu = bool(gpu)

    print('=====Arguments=====')
    print('batch size:\t{}'.format(batch_size))
    print('epoch num:\t{}'.format(epoch_num))
    print('fp16:\t{}'.format(fp16))
    print('gpu:\t{}'.format(gpu))
    print('scheduler setting:\t{}'.format(scheduler_setting))
    print('max grad norm:\t{}'.format(max_grad_norm))
    print('warmup percent:\t{}'.format(warmup_percent))
    print('=====Arguments=====')

    label_num = 2
    model_save_path = 'weights/passage_ranker_2'

    logging.basicConfig(format='%(asctime)s - %(message)s',
                        datefmt='%Y-%m-%d %H:%M:%S',
                        level=logging.INFO,
                        handlers=[LoggingHandler()])

    # Read the dataset
    train_data = get_qa_examples('../data/qa_ranking_large/train.jsonl', dev=False)
    dev_data = get_qa_examples('../data/qa_ranking_large/dev.jsonl', dev=True)[:20000]

    logging.info('train data size {}'.format(len(train_data)))
    logging.info('dev data size {}'.format(len(dev_data)))
    total_steps = math.ceil(epoch_num * len(train_data) * 1. / batch_size)
    warmup_steps = int(total_steps * warmup_percent)

    model = PassageRanker(gpu=gpu, batch_size=batch_size)

    optimizer = AdamW(model.parameters(), lr=2e-5, eps=1e-6, correct_bias=False)
    scheduler = get_scheduler(optimizer, scheduler_setting, warmup_steps=warmup_steps, t_total=total_steps)
    if fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level='O1')

    best_acc = -1.
    for ep in range(epoch_num):
        logging.info('\n=====epoch {}/{}====='.format(ep, epoch_num))
        best_acc = train(model, optimizer, scheduler, train_data, dev_data, batch_size, fp16, gpu,
                         max_grad_norm, best_acc, model_save_path)