Spaces:
Sleeping
Sleeping
File size: 11,030 Bytes
592f71e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import os
import torch
import logging
import math
import argparse
import copy
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import transformers
from torch import nn
from torch.nn import DataParallel
from transformers import BertModel, BertTokenizer
from .data_utils import build_batch, LoggingHandler, get_examples, get_qa_examples
from datetime import datetime
from tqdm import tqdm
from transformers import *
from nltk.tokenize import word_tokenize
from sklearn.metrics import precision_recall_fscore_support
#os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
#os.environ["CUDA_VISIBLE_DEVICES"] = "8,15"
class PassageRanker(nn.Module):
"""Performs prediction, given the input of BERT embeddings.
"""
def __init__(self, model_path=None, gpu=True, label_num=2, batch_size=16):
super(PassageRanker, self).__init__()
lm = 'bert-large-cased'
if model_path is not None:
configuration = AutoConfig.from_pretrained(lm)
self.language_model = BertModel(configuration)
else:
self.language_model = AutoModel.from_pretrained(lm)
self.language_model = DataParallel(self.language_model)
self.tokenizer = AutoTokenizer.from_pretrained(lm)
self.vdim = 1024
self.max_length = 256
self.classification_head = nn.Linear(self.vdim, label_num)
self.gpu = gpu
self.batch_size = batch_size
# load trained model
if model_path is not None:
if gpu:
sdict = torch.load(model_path)
self.load_state_dict(sdict, strict=False)
self.to('cuda')
else:
sdict = torch.load(model_path, map_location=lambda storage, loc: storage)
self.load_state_dict(sdict, strict=False)
else:
if self.gpu:
self.to('cuda')
def load_model(self, sdict):
if self.gpu:
self.load_state_dict(sdict)
self.to('cuda')
else:
self.load_state_dict(sdict)
def forward(self, sent_pair_list):
all_probs = None
for batch_idx in range(0, len(sent_pair_list), self.batch_size):
probs = self.ff(sent_pair_list[batch_idx:batch_idx + self.batch_size]).data.cpu().numpy()
if all_probs is None:
all_probs = probs
else:
all_probs = np.append(all_probs, probs, axis=0)
labels = []
for pp in all_probs:
ll = np.argmax(pp)
if ll == 0:
labels.append('relevant')
else:
labels.append('irrelevant')
return labels, all_probs
def ff(self, sent_pair_list):
ids, types, masks = build_batch(self.tokenizer, sent_pair_list, max_len=self.max_length)
if ids is None:
return None
ids_tensor = torch.tensor(ids)
types_tensor = torch.tensor(types)
masks_tensor = torch.tensor(masks)
if self.gpu:
ids_tensor = ids_tensor.to('cuda')
types_tensor = types_tensor.to('cuda')
masks_tensor = masks_tensor.to('cuda')
# self.bert.to('cuda')
# self.nli_head.to('cuda')
cls_vecs = self.language_model(input_ids=ids_tensor, token_type_ids=types_tensor, attention_mask=masks_tensor)[1]
logits = self.classification_head(cls_vecs)
predict_probs = F.log_softmax(logits, dim=1)
return predict_probs
def save(self, output_path, config_dic=None, acc=None):
if acc is None:
model_name = 'qa_ranker.state_dict'
else:
model_name = 'qa_ranker_acc{}.state_dict'.format(acc)
opath = os.path.join(output_path, model_name)
if config_dic is None:
torch.save(self.state_dict(), opath)
else:
torch.save(config_dic, opath)
@staticmethod
def load(input_path, gpu=True, label_num=2, batch_size=16):
if gpu:
sdict = torch.load(input_path)
else:
sdict = torch.load(input_path, map_location=lambda storage, loc: storage)
model = PassageRanker(gpu=gpu, label_num=label_num, batch_size=batch_size)
model.load_state_dict(sdict)
return model
def get_scheduler(optimizer, scheduler: str, warmup_steps: int, t_total: int):
"""
Returns the correct learning rate scheduler
"""
scheduler = scheduler.lower()
if scheduler == 'constantlr':
return transformers.optimization.get_constant_schedule(optimizer)
elif scheduler == 'warmupconstant':
return transformers.optimization.get_constant_schedule_with_warmup(optimizer, warmup_steps)
elif scheduler == 'warmuplinear':
return transformers.optimization.get_linear_schedule_with_warmup(optimizer, warmup_steps, t_total)
elif scheduler == 'warmupcosine':
return transformers.optimization.get_cosine_schedule_with_warmup(optimizer, warmup_steps, t_total)
elif scheduler == 'warmupcosinewithhardrestarts':
return transformers.optimization.get_cosine_with_hard_restarts_schedule_with_warmup(optimizer, warmup_steps,
t_total)
else:
raise ValueError("Unknown scheduler {}".format(scheduler))
def train(model, optimizer, scheduler, train_data, dev_data, batch_size, fp16, gpu,
max_grad_norm, best_acc, model_save_path):
loss_fn = nn.CrossEntropyLoss()
model.train()
step_cnt = 0
for pointer in tqdm(range(0, len(train_data), batch_size), desc='training'):
step_cnt += 1
sent_pairs = []
labels = []
for i in range(pointer, pointer + batch_size):
if i >= len(train_data):
break
sents = train_data[i].get_texts()
sent_pairs.append(sents)
labels.append(train_data[i].get_label())
predicted_probs = model.ff(sent_pairs)
if predicted_probs is None:
continue
true_labels = torch.LongTensor(labels)
if gpu:
true_labels = true_labels.to('cuda')
loss = loss_fn(predicted_probs, true_labels)
if fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), max_grad_norm)
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)
optimizer.step()
scheduler.step()
optimizer.zero_grad()
if step_cnt % 5000 == 0:
acc = evaluate(model, dev_data, mute=True)
logging.info('==> step {} dev acc: {}'.format(step_cnt, acc))
model.train() # model was in eval mode in evaluate(); re-activate the train mode
if acc > best_acc:
best_acc = acc
logging.info('Saving model...')
model.save(model_save_path, model.state_dict())
return best_acc
def parse_args():
ap = argparse.ArgumentParser("arguments for bert-nli training")
ap.add_argument('-b', '--batch_size', type=int, default=128, help='batch size')
ap.add_argument('-ep', '--epoch_num', type=int, default=10, help='epoch num')
ap.add_argument('--fp16', type=int, default=0, help='use apex mixed precision training (1) or not (0)')
ap.add_argument('--gpu', type=int, default=1, help='use gpu (1) or not (0)')
ap.add_argument('-ss', '--scheduler_setting', type=str, default='WarmupLinear',
choices=['WarmupLinear', 'ConstantLR', 'WarmupConstant', 'WarmupCosine',
'WarmupCosineWithHardRestarts'])
ap.add_argument('-mg', '--max_grad_norm', type=float, default=1., help='maximum gradient norm')
ap.add_argument('-wp', '--warmup_percent', type=float, default=0.1,
help='how many percentage of steps are used for warmup')
args = ap.parse_args()
return args.batch_size, args.epoch_num, args.fp16, args.gpu, args.scheduler_setting, args.max_grad_norm, args.warmup_percent
def evaluate(model, test_data, mute=False):
model.eval()
sent_pairs = [test_data[i].get_texts() for i in range(len(test_data))]
all_labels = [test_data[i].get_label() for i in range(len(test_data))]
_, probs = model(sent_pairs)
all_predict = [np.argmax(pp) for pp in probs]
assert len(all_predict) == len(all_labels)
acc = len([i for i in range(len(all_labels)) if all_predict[i] == all_labels[i]]) * 1. / len(all_labels)
prf = precision_recall_fscore_support(all_labels, all_predict, average=None, labels=[0, 1])
if not mute:
print('==>acc<==', acc)
print('label meanings: 0: relevant, 1: irrelevant')
print('==>precision-recall-f1<==\n', prf)
return acc
if __name__ == '__main__':
batch_size, epoch_num, fp16, gpu, scheduler_setting, max_grad_norm, warmup_percent = parse_args()
fp16 = bool(fp16)
gpu = bool(gpu)
print('=====Arguments=====')
print('batch size:\t{}'.format(batch_size))
print('epoch num:\t{}'.format(epoch_num))
print('fp16:\t{}'.format(fp16))
print('gpu:\t{}'.format(gpu))
print('scheduler setting:\t{}'.format(scheduler_setting))
print('max grad norm:\t{}'.format(max_grad_norm))
print('warmup percent:\t{}'.format(warmup_percent))
print('=====Arguments=====')
label_num = 2
model_save_path = 'weights/passage_ranker_2'
logging.basicConfig(format='%(asctime)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=logging.INFO,
handlers=[LoggingHandler()])
# Read the dataset
train_data = get_qa_examples('../data/qa_ranking_large/train.jsonl', dev=False)
dev_data = get_qa_examples('../data/qa_ranking_large/dev.jsonl', dev=True)[:20000]
logging.info('train data size {}'.format(len(train_data)))
logging.info('dev data size {}'.format(len(dev_data)))
total_steps = math.ceil(epoch_num * len(train_data) * 1. / batch_size)
warmup_steps = int(total_steps * warmup_percent)
model = PassageRanker(gpu=gpu, batch_size=batch_size)
optimizer = AdamW(model.parameters(), lr=2e-5, eps=1e-6, correct_bias=False)
scheduler = get_scheduler(optimizer, scheduler_setting, warmup_steps=warmup_steps, t_total=total_steps)
if fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
best_acc = -1.
for ep in range(epoch_num):
logging.info('\n=====epoch {}/{}====='.format(ep, epoch_num))
best_acc = train(model, optimizer, scheduler, train_data, dev_data, batch_size, fp16, gpu,
max_grad_norm, best_acc, model_save_path)
|