|  | import copy | 
					
						
						|  | import math | 
					
						
						|  | import torch | 
					
						
						|  | from torch import nn | 
					
						
						|  | from torch.nn import functional as F | 
					
						
						|  |  | 
					
						
						|  | import commons | 
					
						
						|  | import modules | 
					
						
						|  | import attentions | 
					
						
						|  | import monotonic_align | 
					
						
						|  |  | 
					
						
						|  | from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d | 
					
						
						|  | from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm | 
					
						
						|  | from commons import init_weights, get_padding | 
					
						
						|  | from pqmf import PQMF | 
					
						
						|  | from stft import TorchSTFT | 
					
						
						|  | import math | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class StochasticDurationPredictor(nn.Module): | 
					
						
						|  | def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0): | 
					
						
						|  | super().__init__() | 
					
						
						|  | filter_channels = in_channels | 
					
						
						|  | self.in_channels = in_channels | 
					
						
						|  | self.filter_channels = filter_channels | 
					
						
						|  | self.kernel_size = kernel_size | 
					
						
						|  | self.p_dropout = p_dropout | 
					
						
						|  | self.n_flows = n_flows | 
					
						
						|  | self.gin_channels = gin_channels | 
					
						
						|  |  | 
					
						
						|  | self.log_flow = modules.Log() | 
					
						
						|  | self.flows = nn.ModuleList() | 
					
						
						|  | self.flows.append(modules.ElementwiseAffine(2)) | 
					
						
						|  | for i in range(n_flows): | 
					
						
						|  | self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)) | 
					
						
						|  | self.flows.append(modules.Flip()) | 
					
						
						|  |  | 
					
						
						|  | self.post_pre = nn.Conv1d(1, filter_channels, 1) | 
					
						
						|  | self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1) | 
					
						
						|  | self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout) | 
					
						
						|  | self.post_flows = nn.ModuleList() | 
					
						
						|  | self.post_flows.append(modules.ElementwiseAffine(2)) | 
					
						
						|  | for i in range(4): | 
					
						
						|  | self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)) | 
					
						
						|  | self.post_flows.append(modules.Flip()) | 
					
						
						|  |  | 
					
						
						|  | self.pre = nn.Conv1d(in_channels, filter_channels, 1) | 
					
						
						|  | self.proj = nn.Conv1d(filter_channels, filter_channels, 1) | 
					
						
						|  | self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout) | 
					
						
						|  | if gin_channels != 0: | 
					
						
						|  | self.cond = nn.Conv1d(gin_channels, filter_channels, 1) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0): | 
					
						
						|  | x = torch.detach(x) | 
					
						
						|  | x = self.pre(x) | 
					
						
						|  | if g is not None: | 
					
						
						|  | g = torch.detach(g) | 
					
						
						|  | x = x + self.cond(g) | 
					
						
						|  | x = self.convs(x, x_mask) | 
					
						
						|  | x = self.proj(x) * x_mask | 
					
						
						|  |  | 
					
						
						|  | if not reverse: | 
					
						
						|  | flows = self.flows | 
					
						
						|  | assert w is not None | 
					
						
						|  |  | 
					
						
						|  | logdet_tot_q = 0 | 
					
						
						|  | h_w = self.post_pre(w) | 
					
						
						|  | h_w = self.post_convs(h_w, x_mask) | 
					
						
						|  | h_w = self.post_proj(h_w) * x_mask | 
					
						
						|  | e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask | 
					
						
						|  | z_q = e_q | 
					
						
						|  | for flow in self.post_flows: | 
					
						
						|  | z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w)) | 
					
						
						|  | logdet_tot_q += logdet_q | 
					
						
						|  | z_u, z1 = torch.split(z_q, [1, 1], 1) | 
					
						
						|  | u = torch.sigmoid(z_u) * x_mask | 
					
						
						|  | z0 = (w - u) * x_mask | 
					
						
						|  | logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1,2]) | 
					
						
						|  | logq = torch.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - logdet_tot_q | 
					
						
						|  |  | 
					
						
						|  | logdet_tot = 0 | 
					
						
						|  | z0, logdet = self.log_flow(z0, x_mask) | 
					
						
						|  | logdet_tot += logdet | 
					
						
						|  | z = torch.cat([z0, z1], 1) | 
					
						
						|  | for flow in flows: | 
					
						
						|  | z, logdet = flow(z, x_mask, g=x, reverse=reverse) | 
					
						
						|  | logdet_tot = logdet_tot + logdet | 
					
						
						|  | nll = torch.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - logdet_tot | 
					
						
						|  | return nll + logq | 
					
						
						|  | else: | 
					
						
						|  | flows = list(reversed(self.flows)) | 
					
						
						|  | flows = flows[:-2] + [flows[-1]] | 
					
						
						|  | z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale | 
					
						
						|  | for flow in flows: | 
					
						
						|  | z = flow(z, x_mask, g=x, reverse=reverse) | 
					
						
						|  | z0, z1 = torch.split(z, [1, 1], 1) | 
					
						
						|  | logw = z0 | 
					
						
						|  | return logw | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DurationPredictor(nn.Module): | 
					
						
						|  | def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.in_channels = in_channels | 
					
						
						|  | self.filter_channels = filter_channels | 
					
						
						|  | self.kernel_size = kernel_size | 
					
						
						|  | self.p_dropout = p_dropout | 
					
						
						|  | self.gin_channels = gin_channels | 
					
						
						|  |  | 
					
						
						|  | self.drop = nn.Dropout(p_dropout) | 
					
						
						|  | self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2) | 
					
						
						|  | self.norm_1 = modules.LayerNorm(filter_channels) | 
					
						
						|  | self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2) | 
					
						
						|  | self.norm_2 = modules.LayerNorm(filter_channels) | 
					
						
						|  | self.proj = nn.Conv1d(filter_channels, 1, 1) | 
					
						
						|  |  | 
					
						
						|  | if gin_channels != 0: | 
					
						
						|  | self.cond = nn.Conv1d(gin_channels, in_channels, 1) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, x_mask, g=None): | 
					
						
						|  | x = torch.detach(x) | 
					
						
						|  | if g is not None: | 
					
						
						|  | g = torch.detach(g) | 
					
						
						|  | x = x + self.cond(g) | 
					
						
						|  | x = self.conv_1(x * x_mask) | 
					
						
						|  | x = torch.relu(x) | 
					
						
						|  | x = self.norm_1(x) | 
					
						
						|  | x = self.drop(x) | 
					
						
						|  | x = self.conv_2(x * x_mask) | 
					
						
						|  | x = torch.relu(x) | 
					
						
						|  | x = self.norm_2(x) | 
					
						
						|  | x = self.drop(x) | 
					
						
						|  | x = self.proj(x * x_mask) | 
					
						
						|  | return x * x_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class TextEncoder(nn.Module): | 
					
						
						|  | def __init__(self, | 
					
						
						|  | n_vocab, | 
					
						
						|  | out_channels, | 
					
						
						|  | hidden_channels, | 
					
						
						|  | filter_channels, | 
					
						
						|  | n_heads, | 
					
						
						|  | n_layers, | 
					
						
						|  | kernel_size, | 
					
						
						|  | p_dropout): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.n_vocab = n_vocab | 
					
						
						|  | self.out_channels = out_channels | 
					
						
						|  | self.hidden_channels = hidden_channels | 
					
						
						|  | self.filter_channels = filter_channels | 
					
						
						|  | self.n_heads = n_heads | 
					
						
						|  | self.n_layers = n_layers | 
					
						
						|  | self.kernel_size = kernel_size | 
					
						
						|  | self.p_dropout = p_dropout | 
					
						
						|  |  | 
					
						
						|  | self.emb = nn.Embedding(n_vocab, hidden_channels) | 
					
						
						|  | nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5) | 
					
						
						|  |  | 
					
						
						|  | self.encoder = attentions.Encoder( | 
					
						
						|  | hidden_channels, | 
					
						
						|  | filter_channels, | 
					
						
						|  | n_heads, | 
					
						
						|  | n_layers, | 
					
						
						|  | kernel_size, | 
					
						
						|  | p_dropout) | 
					
						
						|  | self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, x_lengths): | 
					
						
						|  | x = self.emb(x) * math.sqrt(self.hidden_channels) | 
					
						
						|  | x = torch.transpose(x, 1, -1) | 
					
						
						|  | x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) | 
					
						
						|  |  | 
					
						
						|  | x = self.encoder(x * x_mask, x_mask) | 
					
						
						|  | stats = self.proj(x) * x_mask | 
					
						
						|  |  | 
					
						
						|  | m, logs = torch.split(stats, self.out_channels, dim=1) | 
					
						
						|  | return x, m, logs, x_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ResidualCouplingBlock(nn.Module): | 
					
						
						|  | def __init__(self, | 
					
						
						|  | channels, | 
					
						
						|  | hidden_channels, | 
					
						
						|  | kernel_size, | 
					
						
						|  | dilation_rate, | 
					
						
						|  | n_layers, | 
					
						
						|  | n_flows=4, | 
					
						
						|  | gin_channels=0): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.channels = channels | 
					
						
						|  | self.hidden_channels = hidden_channels | 
					
						
						|  | self.kernel_size = kernel_size | 
					
						
						|  | self.dilation_rate = dilation_rate | 
					
						
						|  | self.n_layers = n_layers | 
					
						
						|  | self.n_flows = n_flows | 
					
						
						|  | self.gin_channels = gin_channels | 
					
						
						|  |  | 
					
						
						|  | self.flows = nn.ModuleList() | 
					
						
						|  | for i in range(n_flows): | 
					
						
						|  | self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True)) | 
					
						
						|  | self.flows.append(modules.Flip()) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, x_mask, g=None, reverse=False): | 
					
						
						|  | if not reverse: | 
					
						
						|  | for flow in self.flows: | 
					
						
						|  | x, _ = flow(x, x_mask, g=g, reverse=reverse) | 
					
						
						|  | else: | 
					
						
						|  | for flow in reversed(self.flows): | 
					
						
						|  | x = flow(x, x_mask, g=g, reverse=reverse) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class PosteriorEncoder(nn.Module): | 
					
						
						|  | def __init__(self, | 
					
						
						|  | in_channels, | 
					
						
						|  | out_channels, | 
					
						
						|  | hidden_channels, | 
					
						
						|  | kernel_size, | 
					
						
						|  | dilation_rate, | 
					
						
						|  | n_layers, | 
					
						
						|  | gin_channels=0): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.in_channels = in_channels | 
					
						
						|  | self.out_channels = out_channels | 
					
						
						|  | self.hidden_channels = hidden_channels | 
					
						
						|  | self.kernel_size = kernel_size | 
					
						
						|  | self.dilation_rate = dilation_rate | 
					
						
						|  | self.n_layers = n_layers | 
					
						
						|  | self.gin_channels = gin_channels | 
					
						
						|  |  | 
					
						
						|  | self.pre = nn.Conv1d(in_channels, hidden_channels, 1) | 
					
						
						|  | self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels) | 
					
						
						|  | self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, x_lengths, g=None): | 
					
						
						|  | x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) | 
					
						
						|  | x = self.pre(x) * x_mask | 
					
						
						|  | x = self.enc(x, x_mask, g=g) | 
					
						
						|  | stats = self.proj(x) * x_mask | 
					
						
						|  | m, logs = torch.split(stats, self.out_channels, dim=1) | 
					
						
						|  | z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask | 
					
						
						|  | return z, m, logs, x_mask | 
					
						
						|  |  | 
					
						
						|  | class iSTFT_Generator(torch.nn.Module): | 
					
						
						|  | def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size, gin_channels=0): | 
					
						
						|  | super(iSTFT_Generator, self).__init__() | 
					
						
						|  |  | 
					
						
						|  | self.gen_istft_n_fft = gen_istft_n_fft | 
					
						
						|  | self.gen_istft_hop_size = gen_istft_hop_size | 
					
						
						|  |  | 
					
						
						|  | self.num_kernels = len(resblock_kernel_sizes) | 
					
						
						|  | self.num_upsamples = len(upsample_rates) | 
					
						
						|  | self.conv_pre = weight_norm(Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)) | 
					
						
						|  | resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2 | 
					
						
						|  |  | 
					
						
						|  | self.ups = nn.ModuleList() | 
					
						
						|  | for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): | 
					
						
						|  | self.ups.append(weight_norm( | 
					
						
						|  | ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)), | 
					
						
						|  | k, u, padding=(k-u)//2))) | 
					
						
						|  |  | 
					
						
						|  | self.resblocks = nn.ModuleList() | 
					
						
						|  | for i in range(len(self.ups)): | 
					
						
						|  | ch = upsample_initial_channel//(2**(i+1)) | 
					
						
						|  | for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)): | 
					
						
						|  | self.resblocks.append(resblock(ch, k, d)) | 
					
						
						|  |  | 
					
						
						|  | self.post_n_fft = self.gen_istft_n_fft | 
					
						
						|  | self.conv_post = weight_norm(Conv1d(ch, self.post_n_fft + 2, 7, 1, padding=3)) | 
					
						
						|  | self.ups.apply(init_weights) | 
					
						
						|  | self.conv_post.apply(init_weights) | 
					
						
						|  | self.reflection_pad = torch.nn.ReflectionPad1d((1, 0)) | 
					
						
						|  | self.stft = TorchSTFT(filter_length=self.gen_istft_n_fft, hop_length=self.gen_istft_hop_size, win_length=self.gen_istft_n_fft) | 
					
						
						|  | def forward(self, x, g=None): | 
					
						
						|  |  | 
					
						
						|  | x = self.conv_pre(x) | 
					
						
						|  | for i in range(self.num_upsamples): | 
					
						
						|  | x = F.leaky_relu(x, modules.LRELU_SLOPE) | 
					
						
						|  | x = self.ups[i](x) | 
					
						
						|  | xs = None | 
					
						
						|  | for j in range(self.num_kernels): | 
					
						
						|  | if xs is None: | 
					
						
						|  | xs = self.resblocks[i*self.num_kernels+j](x) | 
					
						
						|  | else: | 
					
						
						|  | xs += self.resblocks[i*self.num_kernels+j](x) | 
					
						
						|  | x = xs / self.num_kernels | 
					
						
						|  | x = F.leaky_relu(x) | 
					
						
						|  | x = self.reflection_pad(x) | 
					
						
						|  | x = self.conv_post(x) | 
					
						
						|  | spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :]) | 
					
						
						|  | phase = math.pi*torch.sin(x[:, self.post_n_fft // 2 + 1:, :]) | 
					
						
						|  | out = self.stft.inverse(spec, phase).to(x.device) | 
					
						
						|  | return out, None | 
					
						
						|  |  | 
					
						
						|  | def remove_weight_norm(self): | 
					
						
						|  | print('Removing weight norm...') | 
					
						
						|  | for l in self.ups: | 
					
						
						|  | remove_weight_norm(l) | 
					
						
						|  | for l in self.resblocks: | 
					
						
						|  | l.remove_weight_norm() | 
					
						
						|  | remove_weight_norm(self.conv_pre) | 
					
						
						|  | remove_weight_norm(self.conv_post) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Multiband_iSTFT_Generator(torch.nn.Module): | 
					
						
						|  | def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size, subbands, gin_channels=0): | 
					
						
						|  | super(Multiband_iSTFT_Generator, self).__init__() | 
					
						
						|  |  | 
					
						
						|  | self.subbands = subbands | 
					
						
						|  | self.num_kernels = len(resblock_kernel_sizes) | 
					
						
						|  | self.num_upsamples = len(upsample_rates) | 
					
						
						|  | self.conv_pre = weight_norm(Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)) | 
					
						
						|  | resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2 | 
					
						
						|  |  | 
					
						
						|  | self.ups = nn.ModuleList() | 
					
						
						|  | for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): | 
					
						
						|  | self.ups.append(weight_norm( | 
					
						
						|  | ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)), | 
					
						
						|  | k, u, padding=(k-u)//2))) | 
					
						
						|  |  | 
					
						
						|  | self.resblocks = nn.ModuleList() | 
					
						
						|  | for i in range(len(self.ups)): | 
					
						
						|  | ch = upsample_initial_channel//(2**(i+1)) | 
					
						
						|  | for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)): | 
					
						
						|  | self.resblocks.append(resblock(ch, k, d)) | 
					
						
						|  |  | 
					
						
						|  | self.post_n_fft = gen_istft_n_fft | 
					
						
						|  | self.ups.apply(init_weights) | 
					
						
						|  | self.reflection_pad = torch.nn.ReflectionPad1d((1, 0)) | 
					
						
						|  | self.reshape_pixelshuffle = [] | 
					
						
						|  |  | 
					
						
						|  | self.subband_conv_post = weight_norm(Conv1d(ch, self.subbands*(self.post_n_fft + 2), 7, 1, padding=3)) | 
					
						
						|  |  | 
					
						
						|  | self.subband_conv_post.apply(init_weights) | 
					
						
						|  |  | 
					
						
						|  | self.gen_istft_n_fft = gen_istft_n_fft | 
					
						
						|  | self.gen_istft_hop_size = gen_istft_hop_size | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, g=None): | 
					
						
						|  | stft = TorchSTFT(filter_length=self.gen_istft_n_fft, hop_length=self.gen_istft_hop_size, win_length=self.gen_istft_n_fft).to(x.device) | 
					
						
						|  | pqmf = PQMF(x.device) | 
					
						
						|  |  | 
					
						
						|  | x = self.conv_pre(x) | 
					
						
						|  |  | 
					
						
						|  | for i in range(self.num_upsamples): | 
					
						
						|  | x = F.leaky_relu(x, modules.LRELU_SLOPE) | 
					
						
						|  | x = self.ups[i](x) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | xs = None | 
					
						
						|  | for j in range(self.num_kernels): | 
					
						
						|  | if xs is None: | 
					
						
						|  | xs = self.resblocks[i*self.num_kernels+j](x) | 
					
						
						|  | else: | 
					
						
						|  | xs += self.resblocks[i*self.num_kernels+j](x) | 
					
						
						|  | x = xs / self.num_kernels | 
					
						
						|  |  | 
					
						
						|  | x = F.leaky_relu(x) | 
					
						
						|  | x = self.reflection_pad(x) | 
					
						
						|  | x = self.subband_conv_post(x) | 
					
						
						|  | x = torch.reshape(x, (x.shape[0], self.subbands, x.shape[1]//self.subbands, x.shape[-1])) | 
					
						
						|  |  | 
					
						
						|  | spec = torch.exp(x[:,:,:self.post_n_fft // 2 + 1, :]) | 
					
						
						|  | phase = math.pi*torch.sin(x[:,:, self.post_n_fft // 2 + 1:, :]) | 
					
						
						|  |  | 
					
						
						|  | y_mb_hat = stft.inverse(torch.reshape(spec, (spec.shape[0]*self.subbands, self.gen_istft_n_fft // 2 + 1, spec.shape[-1])), torch.reshape(phase, (phase.shape[0]*self.subbands, self.gen_istft_n_fft // 2 + 1, phase.shape[-1]))) | 
					
						
						|  | y_mb_hat = torch.reshape(y_mb_hat, (x.shape[0], self.subbands, 1, y_mb_hat.shape[-1])) | 
					
						
						|  | y_mb_hat = y_mb_hat.squeeze(-2) | 
					
						
						|  |  | 
					
						
						|  | y_g_hat = pqmf.synthesis(y_mb_hat) | 
					
						
						|  |  | 
					
						
						|  | return y_g_hat, y_mb_hat | 
					
						
						|  |  | 
					
						
						|  | def remove_weight_norm(self): | 
					
						
						|  | print('Removing weight norm...') | 
					
						
						|  | for l in self.ups: | 
					
						
						|  | remove_weight_norm(l) | 
					
						
						|  | for l in self.resblocks: | 
					
						
						|  | l.remove_weight_norm() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Multistream_iSTFT_Generator(torch.nn.Module): | 
					
						
						|  | def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size, subbands, gin_channels=0): | 
					
						
						|  | super(Multistream_iSTFT_Generator, self).__init__() | 
					
						
						|  |  | 
					
						
						|  | self.subbands = subbands | 
					
						
						|  | self.num_kernels = len(resblock_kernel_sizes) | 
					
						
						|  | self.num_upsamples = len(upsample_rates) | 
					
						
						|  | self.conv_pre = weight_norm(Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)) | 
					
						
						|  | resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2 | 
					
						
						|  |  | 
					
						
						|  | self.ups = nn.ModuleList() | 
					
						
						|  | for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): | 
					
						
						|  | self.ups.append(weight_norm( | 
					
						
						|  | ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)), | 
					
						
						|  | k, u, padding=(k-u)//2))) | 
					
						
						|  |  | 
					
						
						|  | self.resblocks = nn.ModuleList() | 
					
						
						|  | for i in range(len(self.ups)): | 
					
						
						|  | ch = upsample_initial_channel//(2**(i+1)) | 
					
						
						|  | for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)): | 
					
						
						|  | self.resblocks.append(resblock(ch, k, d)) | 
					
						
						|  |  | 
					
						
						|  | self.post_n_fft = gen_istft_n_fft | 
					
						
						|  | self.ups.apply(init_weights) | 
					
						
						|  | self.reflection_pad = torch.nn.ReflectionPad1d((1, 0)) | 
					
						
						|  | self.reshape_pixelshuffle = [] | 
					
						
						|  |  | 
					
						
						|  | self.subband_conv_post = weight_norm(Conv1d(ch, self.subbands*(self.post_n_fft + 2), 7, 1, padding=3)) | 
					
						
						|  |  | 
					
						
						|  | self.subband_conv_post.apply(init_weights) | 
					
						
						|  |  | 
					
						
						|  | self.gen_istft_n_fft = gen_istft_n_fft | 
					
						
						|  | self.gen_istft_hop_size = gen_istft_hop_size | 
					
						
						|  |  | 
					
						
						|  | updown_filter = torch.zeros((self.subbands, self.subbands, self.subbands)).float() | 
					
						
						|  | for k in range(self.subbands): | 
					
						
						|  | updown_filter[k, k, 0] = 1.0 | 
					
						
						|  | self.register_buffer("updown_filter", updown_filter) | 
					
						
						|  | self.multistream_conv_post = weight_norm(Conv1d(4, 1, kernel_size=63, bias=False, padding=get_padding(63, 1))) | 
					
						
						|  | self.multistream_conv_post.apply(init_weights) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, g=None): | 
					
						
						|  | stft = TorchSTFT(filter_length=self.gen_istft_n_fft, hop_length=self.gen_istft_hop_size, win_length=self.gen_istft_n_fft).to(x.device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | x = self.conv_pre(x) | 
					
						
						|  |  | 
					
						
						|  | for i in range(self.num_upsamples): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | x = F.leaky_relu(x, modules.LRELU_SLOPE) | 
					
						
						|  | x = self.ups[i](x) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | xs = None | 
					
						
						|  | for j in range(self.num_kernels): | 
					
						
						|  | if xs is None: | 
					
						
						|  | xs = self.resblocks[i*self.num_kernels+j](x) | 
					
						
						|  | else: | 
					
						
						|  | xs += self.resblocks[i*self.num_kernels+j](x) | 
					
						
						|  | x = xs / self.num_kernels | 
					
						
						|  |  | 
					
						
						|  | x = F.leaky_relu(x) | 
					
						
						|  | x = self.reflection_pad(x) | 
					
						
						|  | x = self.subband_conv_post(x) | 
					
						
						|  | x = torch.reshape(x, (x.shape[0], self.subbands, x.shape[1]//self.subbands, x.shape[-1])) | 
					
						
						|  |  | 
					
						
						|  | spec = torch.exp(x[:,:,:self.post_n_fft // 2 + 1, :]) | 
					
						
						|  | phase = math.pi*torch.sin(x[:,:, self.post_n_fft // 2 + 1:, :]) | 
					
						
						|  |  | 
					
						
						|  | y_mb_hat = stft.inverse(torch.reshape(spec, (spec.shape[0]*self.subbands, self.gen_istft_n_fft // 2 + 1, spec.shape[-1])), torch.reshape(phase, (phase.shape[0]*self.subbands, self.gen_istft_n_fft // 2 + 1, phase.shape[-1]))) | 
					
						
						|  | y_mb_hat = torch.reshape(y_mb_hat, (x.shape[0], self.subbands, 1, y_mb_hat.shape[-1])) | 
					
						
						|  | y_mb_hat = y_mb_hat.squeeze(-2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | y_mb_hat = F.conv_transpose1d(y_mb_hat, self.updown_filter.to(x.device) * self.subbands, stride=self.subbands) | 
					
						
						|  |  | 
					
						
						|  | y_g_hat = self.multistream_conv_post(y_mb_hat) | 
					
						
						|  |  | 
					
						
						|  | return y_g_hat, y_mb_hat | 
					
						
						|  |  | 
					
						
						|  | def remove_weight_norm(self): | 
					
						
						|  | print('Removing weight norm...') | 
					
						
						|  | for l in self.ups: | 
					
						
						|  | remove_weight_norm(l) | 
					
						
						|  | for l in self.resblocks: | 
					
						
						|  | l.remove_weight_norm() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DiscriminatorP(torch.nn.Module): | 
					
						
						|  | def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): | 
					
						
						|  | super(DiscriminatorP, self).__init__() | 
					
						
						|  | self.period = period | 
					
						
						|  | self.use_spectral_norm = use_spectral_norm | 
					
						
						|  | norm_f = weight_norm if use_spectral_norm == False else spectral_norm | 
					
						
						|  | self.convs = nn.ModuleList([ | 
					
						
						|  | norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), | 
					
						
						|  | norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), | 
					
						
						|  | norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), | 
					
						
						|  | norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), | 
					
						
						|  | norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))), | 
					
						
						|  | ]) | 
					
						
						|  | self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | fmap = [] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | b, c, t = x.shape | 
					
						
						|  | if t % self.period != 0: | 
					
						
						|  | n_pad = self.period - (t % self.period) | 
					
						
						|  | x = F.pad(x, (0, n_pad), "reflect") | 
					
						
						|  | t = t + n_pad | 
					
						
						|  | x = x.view(b, c, t // self.period, self.period) | 
					
						
						|  |  | 
					
						
						|  | for l in self.convs: | 
					
						
						|  | x = l(x) | 
					
						
						|  | x = F.leaky_relu(x, modules.LRELU_SLOPE) | 
					
						
						|  | fmap.append(x) | 
					
						
						|  | x = self.conv_post(x) | 
					
						
						|  | fmap.append(x) | 
					
						
						|  | x = torch.flatten(x, 1, -1) | 
					
						
						|  |  | 
					
						
						|  | return x, fmap | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DiscriminatorS(torch.nn.Module): | 
					
						
						|  | def __init__(self, use_spectral_norm=False): | 
					
						
						|  | super(DiscriminatorS, self).__init__() | 
					
						
						|  | norm_f = weight_norm if use_spectral_norm == False else spectral_norm | 
					
						
						|  | self.convs = nn.ModuleList([ | 
					
						
						|  | norm_f(Conv1d(1, 16, 15, 1, padding=7)), | 
					
						
						|  | norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)), | 
					
						
						|  | norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)), | 
					
						
						|  | norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)), | 
					
						
						|  | norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), | 
					
						
						|  | norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), | 
					
						
						|  | ]) | 
					
						
						|  | self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | fmap = [] | 
					
						
						|  |  | 
					
						
						|  | for l in self.convs: | 
					
						
						|  | x = l(x) | 
					
						
						|  | x = F.leaky_relu(x, modules.LRELU_SLOPE) | 
					
						
						|  | fmap.append(x) | 
					
						
						|  | x = self.conv_post(x) | 
					
						
						|  | fmap.append(x) | 
					
						
						|  | x = torch.flatten(x, 1, -1) | 
					
						
						|  |  | 
					
						
						|  | return x, fmap | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MultiPeriodDiscriminator(torch.nn.Module): | 
					
						
						|  | def __init__(self, use_spectral_norm=False): | 
					
						
						|  | super(MultiPeriodDiscriminator, self).__init__() | 
					
						
						|  | periods = [2,3,5,7,11] | 
					
						
						|  |  | 
					
						
						|  | discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)] | 
					
						
						|  | discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods] | 
					
						
						|  | self.discriminators = nn.ModuleList(discs) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, y, y_hat): | 
					
						
						|  | y_d_rs = [] | 
					
						
						|  | y_d_gs = [] | 
					
						
						|  | fmap_rs = [] | 
					
						
						|  | fmap_gs = [] | 
					
						
						|  | for i, d in enumerate(self.discriminators): | 
					
						
						|  | y_d_r, fmap_r = d(y) | 
					
						
						|  | y_d_g, fmap_g = d(y_hat) | 
					
						
						|  | y_d_rs.append(y_d_r) | 
					
						
						|  | y_d_gs.append(y_d_g) | 
					
						
						|  | fmap_rs.append(fmap_r) | 
					
						
						|  | fmap_gs.append(fmap_g) | 
					
						
						|  |  | 
					
						
						|  | return y_d_rs, y_d_gs, fmap_rs, fmap_gs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SynthesizerTrn(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | Synthesizer for Training | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, | 
					
						
						|  | n_vocab, | 
					
						
						|  | spec_channels, | 
					
						
						|  | segment_size, | 
					
						
						|  | inter_channels, | 
					
						
						|  | hidden_channels, | 
					
						
						|  | filter_channels, | 
					
						
						|  | n_heads, | 
					
						
						|  | n_layers, | 
					
						
						|  | kernel_size, | 
					
						
						|  | p_dropout, | 
					
						
						|  | resblock, | 
					
						
						|  | resblock_kernel_sizes, | 
					
						
						|  | resblock_dilation_sizes, | 
					
						
						|  | upsample_rates, | 
					
						
						|  | upsample_initial_channel, | 
					
						
						|  | upsample_kernel_sizes, | 
					
						
						|  | gen_istft_n_fft, | 
					
						
						|  | gen_istft_hop_size, | 
					
						
						|  | n_speakers=0, | 
					
						
						|  | gin_channels=0, | 
					
						
						|  | use_sdp=False, | 
					
						
						|  | ms_istft_vits=False, | 
					
						
						|  | mb_istft_vits = False, | 
					
						
						|  | subbands = False, | 
					
						
						|  | istft_vits=False, | 
					
						
						|  | **kwargs): | 
					
						
						|  |  | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.n_vocab = n_vocab | 
					
						
						|  | self.spec_channels = spec_channels | 
					
						
						|  | self.inter_channels = inter_channels | 
					
						
						|  | self.hidden_channels = hidden_channels | 
					
						
						|  | self.filter_channels = filter_channels | 
					
						
						|  | self.n_heads = n_heads | 
					
						
						|  | self.n_layers = n_layers | 
					
						
						|  | self.kernel_size = kernel_size | 
					
						
						|  | self.p_dropout = p_dropout | 
					
						
						|  | self.resblock = resblock | 
					
						
						|  | self.resblock_kernel_sizes = resblock_kernel_sizes | 
					
						
						|  | self.resblock_dilation_sizes = resblock_dilation_sizes | 
					
						
						|  | self.upsample_rates = upsample_rates | 
					
						
						|  | self.upsample_initial_channel = upsample_initial_channel | 
					
						
						|  | self.upsample_kernel_sizes = upsample_kernel_sizes | 
					
						
						|  | self.segment_size = segment_size | 
					
						
						|  | self.n_speakers = n_speakers | 
					
						
						|  | self.gin_channels = gin_channels | 
					
						
						|  | self.ms_istft_vits = ms_istft_vits | 
					
						
						|  | self.mb_istft_vits = mb_istft_vits | 
					
						
						|  | self.istft_vits = istft_vits | 
					
						
						|  |  | 
					
						
						|  | self.use_sdp = use_sdp | 
					
						
						|  |  | 
					
						
						|  | self.enc_p = TextEncoder(n_vocab, | 
					
						
						|  | inter_channels, | 
					
						
						|  | hidden_channels, | 
					
						
						|  | filter_channels, | 
					
						
						|  | n_heads, | 
					
						
						|  | n_layers, | 
					
						
						|  | kernel_size, | 
					
						
						|  | p_dropout) | 
					
						
						|  | if mb_istft_vits == True: | 
					
						
						|  | print('Mutli-band iSTFT VITS') | 
					
						
						|  | self.dec = Multiband_iSTFT_Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size, subbands, gin_channels=gin_channels) | 
					
						
						|  | elif ms_istft_vits == True: | 
					
						
						|  | print('Mutli-stream iSTFT VITS') | 
					
						
						|  | self.dec = Multistream_iSTFT_Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size, subbands, gin_channels=gin_channels) | 
					
						
						|  | elif istft_vits == True: | 
					
						
						|  | print('iSTFT-VITS') | 
					
						
						|  | self.dec = iSTFT_Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size, gin_channels=gin_channels) | 
					
						
						|  | else: | 
					
						
						|  | print('Decoder Error in json file') | 
					
						
						|  |  | 
					
						
						|  | self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels) | 
					
						
						|  | self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels) | 
					
						
						|  |  | 
					
						
						|  | if use_sdp: | 
					
						
						|  | self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels) | 
					
						
						|  | else: | 
					
						
						|  | self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels) | 
					
						
						|  |  | 
					
						
						|  | if n_speakers > 1: | 
					
						
						|  | self.emb_g = nn.Embedding(n_speakers, gin_channels) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, x_lengths, y, y_lengths, sid=None): | 
					
						
						|  |  | 
					
						
						|  | x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths) | 
					
						
						|  | if self.n_speakers > 0: | 
					
						
						|  | g = self.emb_g(sid).unsqueeze(-1) | 
					
						
						|  | else: | 
					
						
						|  | g = None | 
					
						
						|  |  | 
					
						
						|  | z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g) | 
					
						
						|  | z_p = self.flow(z, y_mask, g=g) | 
					
						
						|  |  | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  |  | 
					
						
						|  | s_p_sq_r = torch.exp(-2 * logs_p) | 
					
						
						|  | neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True) | 
					
						
						|  | neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2), s_p_sq_r) | 
					
						
						|  | neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) | 
					
						
						|  | neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) | 
					
						
						|  | neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4 | 
					
						
						|  |  | 
					
						
						|  | attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1) | 
					
						
						|  | attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach() | 
					
						
						|  |  | 
					
						
						|  | w = attn.sum(2) | 
					
						
						|  | if self.use_sdp: | 
					
						
						|  | l_length = self.dp(x, x_mask, w, g=g) | 
					
						
						|  | l_length = l_length / torch.sum(x_mask) | 
					
						
						|  | else: | 
					
						
						|  | logw_ = torch.log(w + 1e-6) * x_mask | 
					
						
						|  | logw = self.dp(x, x_mask, g=g) | 
					
						
						|  | l_length = torch.sum((logw - logw_)**2, [1,2]) / torch.sum(x_mask) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) | 
					
						
						|  | logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size) | 
					
						
						|  | o, o_mb = self.dec(z_slice, g=g) | 
					
						
						|  | return o, o_mb, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q) | 
					
						
						|  |  | 
					
						
						|  | def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None): | 
					
						
						|  | x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths) | 
					
						
						|  | if self.n_speakers > 0: | 
					
						
						|  | g = self.emb_g(sid).unsqueeze(-1) | 
					
						
						|  | else: | 
					
						
						|  | g = None | 
					
						
						|  |  | 
					
						
						|  | if self.use_sdp: | 
					
						
						|  | logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w) | 
					
						
						|  | else: | 
					
						
						|  | logw = self.dp(x, x_mask, g=g) | 
					
						
						|  | w = torch.exp(logw) * x_mask * length_scale | 
					
						
						|  | w_ceil = torch.ceil(w) | 
					
						
						|  | y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long() | 
					
						
						|  | y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype) | 
					
						
						|  | attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1) | 
					
						
						|  | attn = commons.generate_path(w_ceil, attn_mask) | 
					
						
						|  |  | 
					
						
						|  | m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) | 
					
						
						|  | logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale | 
					
						
						|  | z = self.flow(z_p, y_mask, g=g, reverse=True) | 
					
						
						|  | o, o_mb = self.dec((z * y_mask)[:,:,:max_len], g=g) | 
					
						
						|  | return o, o_mb, attn, y_mask, (z, z_p, m_p, logs_p) | 
					
						
						|  |  | 
					
						
						|  | def voice_conversion(self, y, y_lengths, sid_src, sid_tgt): | 
					
						
						|  | assert self.n_speakers > 0, "n_speakers have to be larger than 0." | 
					
						
						|  | g_src = self.emb_g(sid_src).unsqueeze(-1) | 
					
						
						|  | g_tgt = self.emb_g(sid_tgt).unsqueeze(-1) | 
					
						
						|  | z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src) | 
					
						
						|  | z_p = self.flow(z, y_mask, g=g_src) | 
					
						
						|  | z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True) | 
					
						
						|  | o_hat, o_hat_mb = self.dec(z_hat * y_mask, g=g_tgt) | 
					
						
						|  | return o_hat, o_hat_mb, y_mask, (z, z_p, z_hat) | 
					
						
						|  |  | 
					
						
						|  |  |