Spaces:
Runtime error
Runtime error
| import os | |
| from diffusers import StableDiffusionPipeline | |
| import ffmpeg | |
| import gradio as gr | |
| # Retrieve the token from Hugging Face secrets | |
| token = os.getenv("HUGGINGFACE_TOKEN") | |
| print(f"Using Hugging Face Token: {os.getenv('HUGGINGFACE_TOKEN')}") | |
| model = StableDiffusionPipeline.from_pretrained( | |
| "runwayml/stable-diffusion-v1-5" | |
| ) | |
| model.to("cpu") # Use CPU since GPU is not available | |
| def generate_video(prompt): | |
| # Generate frames | |
| frames = [] | |
| for i in range(5): # Adjust the number of frames for your video | |
| image = model(prompt).images[0] | |
| frame_path = f"frame_{i}.png" | |
| image.save(frame_path) | |
| frames.append(frame_path) | |
| # Combine frames into a video | |
| output_video = "output.mp4" | |
| ( | |
| ffmpeg | |
| .input("frame_%d.png", framerate=1) # Adjust framerate | |
| .output(output_video) | |
| .run(overwrite_output=True) | |
| ) | |
| # Clean up frames | |
| for frame in frames: | |
| os.remove(frame) | |
| return output_video # Path to the generated video | |
| # Gradio interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# AI Video Generator") | |
| prompt_input = gr.Textbox(label="Enter your video prompt", placeholder="Type something creative...") | |
| video_output = gr.File(label="Download Your Video") | |
| generate_button = gr.Button("Generate Video") | |
| generate_button.click(fn=generate_video, inputs=prompt_input, outputs=video_output) | |
| demo.launch() |