Update app.py
Browse files
app.py
CHANGED
|
@@ -1,18 +1,12 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
import fitz
|
| 4 |
import gradio as gr
|
| 5 |
import requests
|
| 6 |
import io
|
| 7 |
import re
|
| 8 |
-
import os
|
| 9 |
from PIL import Image
|
| 10 |
|
| 11 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
| 12 |
-
qa_model = pipeline("question-answering", model="
|
| 13 |
-
|
| 14 |
-
os.environ["HUGGINGFACE_HUB_TOKEN"] = "ctp-hw"
|
| 15 |
-
my_key = os.environ["HUGGINGFACE_HUB_TOKEN"]
|
| 16 |
|
| 17 |
def extract_text_from_pdf(pdf_file):
|
| 18 |
with fitz.open(pdf_file) as pdf:
|
|
@@ -20,13 +14,10 @@ def extract_text_from_pdf(pdf_file):
|
|
| 20 |
for page in pdf:
|
| 21 |
text += page.get_text("text")
|
| 22 |
|
| 23 |
-
text = re.sub(r'\s+', ' ', text)
|
| 24 |
-
text = text.strip()
|
| 25 |
return text
|
| 26 |
|
| 27 |
-
def
|
| 28 |
-
text = extract_text_from_pdf(pdf_file)
|
| 29 |
-
|
| 30 |
if len(text) > 1000:
|
| 31 |
chunks = [text[i:i+1000] for i in range(0, len(text), 1000)]
|
| 32 |
summary = ""
|
|
@@ -34,37 +25,39 @@ def summarize_pdf(pdf_file):
|
|
| 34 |
summary += summarizer(chunk, max_length=150, min_length=50, do_sample=False)[0]['summary_text'] + " "
|
| 35 |
else:
|
| 36 |
summary = summarizer(text, max_length=150, min_length=50, do_sample=False)[0]['summary_text']
|
| 37 |
-
|
| 38 |
return summary
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
answer = qa_model(question=question, context=text)
|
| 43 |
-
return answer['answer']
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
|
|
|
| 47 |
|
| 48 |
-
def
|
| 49 |
-
|
| 50 |
-
|
|
|
|
| 51 |
|
| 52 |
def summarize_and_qa(pdf_file, question):
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
gr.Interface(
|
| 62 |
fn=summarize_and_qa,
|
| 63 |
inputs=["file", "text"],
|
| 64 |
-
outputs=["textbox", "textbox"
|
| 65 |
-
title="
|
| 66 |
-
description="Upload a PDF to get a summary
|
| 67 |
-
).launch()
|
| 68 |
-
|
| 69 |
-
if __name__ == "__main__":
|
| 70 |
-
demo.launch()
|
|
|
|
| 1 |
+
import fitz
|
|
|
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import requests
|
| 4 |
import io
|
| 5 |
import re
|
|
|
|
| 6 |
from PIL import Image
|
| 7 |
|
| 8 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
| 9 |
+
qa_model = pipeline("question-answering", model="deepset/bert-large-uncased-whole-word-masking-squad2")
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
def extract_text_from_pdf(pdf_file):
|
| 12 |
with fitz.open(pdf_file) as pdf:
|
|
|
|
| 14 |
for page in pdf:
|
| 15 |
text += page.get_text("text")
|
| 16 |
|
| 17 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
|
|
|
| 18 |
return text
|
| 19 |
|
| 20 |
+
def summarize(text):
|
|
|
|
|
|
|
| 21 |
if len(text) > 1000:
|
| 22 |
chunks = [text[i:i+1000] for i in range(0, len(text), 1000)]
|
| 23 |
summary = ""
|
|
|
|
| 25 |
summary += summarizer(chunk, max_length=150, min_length=50, do_sample=False)[0]['summary_text'] + " "
|
| 26 |
else:
|
| 27 |
summary = summarizer(text, max_length=150, min_length=50, do_sample=False)[0]['summary_text']
|
| 28 |
+
|
| 29 |
return summary
|
| 30 |
|
| 31 |
+
# API_URL = "https://api-inference.huggingface.co/models/deepset/bert-large-uncased-whole-word-masking-squad2"
|
| 32 |
+
# headers = {"Authorization": f"Bearer {my_key}"}
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
# def query(payload):
|
| 35 |
+
# response = requests.post(API_URL, headers=headers, json=payload)
|
| 36 |
+
# return response.content
|
| 37 |
|
| 38 |
+
def answer_question(text, question):
|
| 39 |
+
response = qa_model(question=question, context=text)
|
| 40 |
+
answer = response['answer']
|
| 41 |
+
return answer
|
| 42 |
|
| 43 |
def summarize_and_qa(pdf_file, question):
|
| 44 |
+
text = extract_text_from_pdf(pdf_file)
|
| 45 |
+
summary = summarize(text)
|
| 46 |
+
answer = answer_question(text, question)
|
| 47 |
+
# image_bytes = query({"inputs": answer})
|
| 48 |
+
# if image_bytes:
|
| 49 |
+
# try:
|
| 50 |
+
# image = Image.open(io.BytesIO(image_bytes))
|
| 51 |
+
# except Exception as e:
|
| 52 |
+
# return summary, answer, None
|
| 53 |
+
# else:
|
| 54 |
+
# image = None
|
| 55 |
+
return summary, answer
|
| 56 |
|
| 57 |
gr.Interface(
|
| 58 |
fn=summarize_and_qa,
|
| 59 |
inputs=["file", "text"],
|
| 60 |
+
outputs=["textbox", "textbox"],
|
| 61 |
+
title="Understand your PDF Better",
|
| 62 |
+
description="Upload a PDF to get a summary. You can ask any question regardging the content of the PDF. It will also generate a picture to help you better understand the content."
|
| 63 |
+
).launch(debug=True, share=True)
|
|
|
|
|
|
|
|
|