Spaces:
Running
Running
import gradio as gr | |
from transformers import pipeline | |
from PIL import Image | |
import torch | |
from torchvision import transforms | |
# MODELES | |
INGREDIENT_MODEL_ID = "stchakman/Fridge_Items_Model" | |
RECIPE_MODEL_ID = "flax-community/t5-recipe-generation" | |
# PIPELINES | |
ingredient_classifier = pipeline( | |
"image-classification", | |
model=INGREDIENT_MODEL_ID, | |
device=0 if torch.cuda.is_available() else -1, | |
top_k=4 | |
) | |
recipe_generator = pipeline( | |
"text2text-generation", | |
model=RECIPE_MODEL_ID, | |
device=0 if torch.cuda.is_available() else -1 | |
) | |
# AUGMENTATION | |
augment = transforms.Compose([ | |
transforms.RandomHorizontalFlip(p=0.5), | |
transforms.RandomRotation(10), | |
transforms.ColorJitter(brightness=0.2, contrast=0.2), | |
]) | |
# FONCTION PRINCIPALE | |
def generate_recipe(image: Image.Image): | |
try: | |
yield "🔄 Traitement de l'image..." | |
image_aug = image | |
yield "📸 Classification en cours..." | |
results = ingredient_classifier(image_aug) | |
ingredients = [res["label"] for res in results] | |
ingredient_str = ", ".join(ingredients) | |
yield f"🥕 Ingrédients détectés : {ingredient_str}\n\n🍳 Génération de la recette..." | |
prompt = f"Ingredients: {ingredient_str}. Recipe:" | |
recipe = recipe_generator(prompt, max_new_tokens=256, do_sample=True)[0]["generated_text"] | |
yield f"### 🥕 Ingrédients détectés :\n{ingredient_str}\n\n### 🍽️ Recette générée :\n{recipe}" | |
except Exception as e: | |
yield f"❌ Une erreur est survenue : {str(e)}" | |
# INTERFACE | |
interface = gr.Interface( | |
fn=generate_recipe, | |
inputs=gr.Image(type="pil", label="📷 Image de vos ingrédients"), | |
outputs=gr.Markdown(), | |
title="🥕 Générateur de Recettes 🧑🍳", | |
description="Dépose une image d'ingrédients pour obtenir une recette automatiquement générée à partir d'un modèle IA.", | |
allow_flagging="never" | |
) | |
if __name__ == "__main__": | |
interface.launch(share=True) |