|
|
import gradio as gr |
|
|
from apscheduler.schedulers.background import BackgroundScheduler |
|
|
from huggingface_hub import snapshot_download |
|
|
|
|
|
from src.about import ( |
|
|
CITATION_BUTTON_LABEL, |
|
|
CITATION_BUTTON_TEXT, |
|
|
INTRODUCTION_TEXT, |
|
|
LLM_BENCHMARKS_TEXT, |
|
|
TITLE, |
|
|
SUBMIT_TEXT |
|
|
) |
|
|
from src.display.css_html_js import custom_css |
|
|
from src.display.utils import ( |
|
|
BENCHMARK_COLS, |
|
|
COLS, |
|
|
AutoEvalColumn, |
|
|
fields, |
|
|
) |
|
|
from src.envs import API, EVAL_RESULTS_PATH, REPO_ID, RESULTS_REPO, TOKEN |
|
|
from src.populate import get_leaderboard_df |
|
|
|
|
|
|
|
|
def restart_space(): |
|
|
API.restart_space(repo_id=REPO_ID) |
|
|
|
|
|
|
|
|
try: |
|
|
snapshot_download( |
|
|
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN |
|
|
) |
|
|
except Exception: |
|
|
restart_space() |
|
|
|
|
|
|
|
|
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS) |
|
|
|
|
|
def init_leaderboard(dataframe, css): |
|
|
if dataframe is None or dataframe.empty: |
|
|
raise ValueError("Leaderboard DataFrame is empty or None.") |
|
|
|
|
|
with gr.Blocks(css=css) as app: |
|
|
|
|
|
gr.Markdown("# Leaderboard") |
|
|
|
|
|
|
|
|
select_columns = gr.CheckboxGroup( |
|
|
label="Select Columns to Display:", |
|
|
choices=[c.name for c in fields(AutoEvalColumn)], |
|
|
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default], |
|
|
elem_id="select-columns" |
|
|
) |
|
|
|
|
|
|
|
|
search_columns = gr.Textbox( |
|
|
label="Search", |
|
|
placeholder=f"Search in {', '.join([AutoEvalColumn.model_name.name])}...", |
|
|
lines=1, |
|
|
elem_id="search-columns" |
|
|
) |
|
|
|
|
|
|
|
|
default_columns = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default] |
|
|
initial_dataframe = dataframe[default_columns].copy() |
|
|
|
|
|
|
|
|
leaderboard = gr.Dataframe( |
|
|
value=initial_dataframe, |
|
|
datatype=[c.type for c in fields(AutoEvalColumn) if c.name in default_columns], |
|
|
headers=default_columns, |
|
|
wrap=True, |
|
|
interactive=False, |
|
|
max_height=800 |
|
|
) |
|
|
|
|
|
|
|
|
def update_leaderboard(search, selected_cols): |
|
|
df = dataframe.copy() |
|
|
|
|
|
if search: |
|
|
df = df[df[AutoEvalColumn.model_name.name].str.contains(search, case=False, na=False)] |
|
|
|
|
|
visible_cols = [col for col in selected_cols if col in df.columns] |
|
|
df = df[visible_cols] |
|
|
return df |
|
|
|
|
|
|
|
|
search_columns.change( |
|
|
fn=update_leaderboard, |
|
|
inputs=[search_columns, select_columns], |
|
|
outputs=leaderboard |
|
|
) |
|
|
select_columns.change( |
|
|
fn=update_leaderboard, |
|
|
inputs=[search_columns, select_columns], |
|
|
outputs=leaderboard |
|
|
) |
|
|
|
|
|
return app |
|
|
|
|
|
|
|
|
demo = gr.Blocks(fill_height=False, css=custom_css) |
|
|
with demo: |
|
|
gr.HTML(TITLE) |
|
|
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") |
|
|
|
|
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
|
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): |
|
|
leaderboard = init_leaderboard(LEADERBOARD_DF, css=custom_css) |
|
|
|
|
|
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2): |
|
|
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") |
|
|
|
|
|
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3): |
|
|
with gr.Row(): |
|
|
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text") |
|
|
|
|
|
with gr.Row(): |
|
|
gr.Markdown(SUBMIT_TEXT, elem_classes="markdown-text") |
|
|
|
|
|
with gr.Row(): |
|
|
with gr.Accordion("π Citation", open=True): |
|
|
citation_button = gr.Textbox( |
|
|
value=CITATION_BUTTON_TEXT, |
|
|
label=CITATION_BUTTON_LABEL, |
|
|
lines=10, |
|
|
elem_id="citation-button", |
|
|
show_copy_button=True, |
|
|
) |
|
|
|
|
|
scheduler = BackgroundScheduler() |
|
|
scheduler.add_job(restart_space, "interval", seconds=1800) |
|
|
scheduler.start() |
|
|
demo.queue(default_concurrency_limit=40).launch() |