import json import os from dataclasses import dataclass import numpy as np from src.display.utils import Tasks @dataclass class EvalResult: """Represents one full evaluation. Built from a combination of the result and request file for a given run. """ model_name: str org: str results: dict model_type: str # Pretrained, fine tuned, ... num_params: int = 0 date: str = "" # submission date of request file still_on_hub: bool = False @classmethod def init_from_json_file(self, json_filepath): """Inits the result from the specific model result file""" with open(json_filepath) as fp: data = json.load(fp) config = data.get("config") num_params = config.get("params") org = config.get("developer", "Unknown") model_type = config.get("model_type", "Unknown") model_name = config.get("model_name") # Extract results available in this file (some results are split in several files) results = {} for task in Tasks: task = task.value # We average all scores of a given metric (not all metrics are present in all files) accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k]) if accs.size == 0 or any([acc is None for acc in accs]): continue mean_acc = np.mean(accs) results[task.benchmark] = mean_acc return self( model_name=model_name, org=org, results=results, num_params=num_params, model_type=model_type ) def to_dict(self): """Converts the Eval Result to a dict compatible with our dataframe display""" data_dict = { "Model": self.model_name, "Type": self.model_type, "#Params (B)": self.num_params } for task in Tasks: data_dict[task.value.col_name] = self.results[task.value.benchmark] return data_dict def get_raw_eval_results(results_path: str) -> list[EvalResult]: """From the path of the results folder root, extract all needed info for results""" model_result_filepaths = [] for fn in os.listdir(results_path): # We should only have json files in model results if fn.endswith(".json"): model_result_filepaths.append(os.path.join(results_path, fn)) eval_results = {} for model_result_filepath in model_result_filepaths: # Creation of result eval_result = EvalResult.init_from_json_file(model_result_filepath) # Store results of same eval together model_name = eval_result.model_name eval_results[model_name] = eval_result results = [] for v in eval_results.values(): try: v.to_dict() # we test if the dict version is complete results.append(v) except KeyError: # not all eval values present continue return results