Spaces:
Sleeping
Sleeping
import base64 | |
import io | |
import gradio as gr | |
from ultralytics import YOLO | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
import traceback | |
import json | |
import os | |
from huggingface_hub import hf_hub_download | |
from huggingface_hub import login | |
login(token = os.environ["HUGGINGFACE_TOKEN"],add_to_git_credential=True) | |
# In a Hugging Face Space, authentication is handled by the environment | |
# No need to explicitly set a token in the Space environment | |
try: | |
# Try to download the model from Hugging Face Hub | |
print("Downloading model from Hugging Face Hub...") | |
try: | |
# First try with force_download | |
model_path = hf_hub_download(repo_id="tech4humans/yolov8s-signature-detector", | |
filename="yolov8s.pt", | |
force_download=True) # Force download for Space environment | |
except Exception as force_error: | |
print(f"Force download failed: {str(force_error)}") | |
# Try again without force_download | |
model_path = hf_hub_download(repo_id="tech4humans/yolov8s-signature-detector", | |
filename="yolov8s.pt", | |
force_download=False) | |
# Load the model from the downloaded path | |
model = YOLO(model_path) | |
print(f"Signature detector model loaded successfully from: {model_path}") | |
except Exception as e: | |
print(f"Error downloading/loading model: {str(e)}") | |
print("Falling back to default YOLOv8 model...") | |
try: | |
# Fallback to standard model | |
model = YOLO("yolov8s.pt") | |
print("Standard YOLOv8 model loaded successfully as fallback!") | |
except Exception as fallback_error: | |
print(f"Error loading fallback model: {str(fallback_error)}") | |
traceback.print_exc() | |
raise | |
def preprocess_image(image): | |
"""Convert image to correct format for YOLO.""" | |
if image is None: | |
# Return a blank image if None is provided | |
blank_image = np.zeros((100, 100, 3), dtype=np.uint8) | |
return blank_image | |
elif isinstance(image, str): | |
# If image is a file path | |
return cv2.imread(image) | |
elif isinstance(image, np.ndarray): | |
# If image is already a numpy array | |
if len(image.shape) == 2: # Grayscale | |
return cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) | |
elif image.shape[2] == 4: # RGBA | |
return cv2.cvtColor(image, cv2.COLOR_RGBA2RGB) | |
return image | |
elif isinstance(image, Image.Image): | |
# If image is a PIL Image | |
return np.array(image) | |
# Added support for base64 encoded images | |
elif isinstance(image, str) and image.startswith('data:image'): | |
try: | |
# Extract base64 part | |
encoded_data = image.split(',')[1] | |
binary_data = base64.b64decode(encoded_data) | |
image = Image.open(io.BytesIO(binary_data)) | |
return np.array(image) | |
except Exception as e: | |
print(f"Error decoding base64 image: {str(e)}") | |
raise | |
else: | |
raise ValueError(f"Unsupported image type: {type(image)}") | |
def detect_signature(image): | |
try: | |
if image is None: | |
# Return empty results for None input | |
blank_image = np.zeros((100, 100, 3), dtype=np.uint8) | |
return blank_image, [] | |
# Handle both regular images and base64 encoded ones | |
processed_image = preprocess_image(image) | |
# Save the processed image to a temporary file if it's not already a file path | |
image_path = None | |
if not isinstance(image, str) or not image.startswith('http'): | |
temp_img = Image.fromarray(processed_image) | |
image_path = 'temp_image.jpg' | |
temp_img.save(image_path) | |
else: | |
image_path = image | |
# Run prediction using the direct approach | |
results = model.predict(source=image_path, save=False, verbose=False) | |
if not results or len(results) == 0: | |
return processed_image, [] | |
# Process results | |
result = results[0] | |
output = [] | |
if hasattr(result, 'boxes'): | |
for box in result.boxes: | |
try: | |
conf = float(box.conf[0]) | |
cls = int(box.cls[0]) | |
class_name = model.names[cls] | |
if conf > 0.3: # Confidence threshold | |
output.append({ | |
"confidence": round(conf, 3), | |
"label": class_name | |
}) | |
except Exception as e: | |
print(f"Error processing box: {str(e)}") | |
traceback.print_exc() | |
continue | |
# Use the plotted image with annotations | |
annotated_image = result.plot() | |
return annotated_image, output | |
except Exception as e: | |
print(f"Error in detect_signature: {str(e)}") | |
traceback.print_exc() | |
# Return original image and empty results in case of error | |
if image is None: | |
return np.zeros((100, 100, 3), dtype=np.uint8), [] | |
return image, [] | |
# Add a direct API endpoint for our Node.js server | |
def api_detect_signature(image_data): | |
"""API endpoint for direct signature detection without UI""" | |
try: | |
# Handle None input | |
if image_data is None: | |
return {"success": False, "error": "No image data provided"} | |
# If data is base64 encoded | |
if isinstance(image_data, str) and image_data.startswith('data:image'): | |
# Use the existing function | |
result_img, detections = detect_signature(image_data) | |
# Convert result image to base64 for API response | |
buffered = io.BytesIO() | |
Image.fromarray(result_img).save(buffered, format="JPEG") | |
img_str = base64.b64encode(buffered.getvalue()).decode() | |
return { | |
"success": True, | |
"detections": detections, | |
"annotated_image": f"data:image/jpeg;base64,{img_str}" | |
} | |
else: | |
return {"success": False, "error": "Invalid image format. Send base64 encoded image."} | |
except Exception as e: | |
print(f"Error in api_detect_signature: {str(e)}") | |
traceback.print_exc() | |
return {"success": False, "error": str(e)} | |
# Create Gradio interface | |
interface = gr.Interface( | |
fn=detect_signature, | |
inputs=gr.Image(type="filepath", label="Upload an image"), | |
outputs=[ | |
gr.Image(label="Detected Signatures"), | |
gr.JSON(label="Detection Results") | |
], | |
title="Signature Detector", | |
description="Upload an image to detect signatures", | |
examples=[ | |
["temp_image.jpg"] if os.path.exists("temp_image.jpg") else None | |
], | |
flagging_mode="never", | |
cache_examples=True | |
) | |
# Create a dedicated API endpoint for direct access | |
api_interface = gr.Interface( | |
fn=api_detect_signature, | |
inputs=gr.Textbox(label="Base64 Image", placeholder="data:image/jpeg;base64,..."), | |
outputs=gr.JSON(label="API Response"), | |
title="Signature Detection API", | |
description="For programmatic access", | |
flagging_mode="never", | |
examples=[ | |
[""] if os.path.exists("temp_image.jpg") else None | |
] | |
) | |
# Create a Gradio Blocks app that includes both interfaces | |
with gr.Blocks() as app: | |
gr.Markdown("# Signature Detection Demo") | |
with gr.Tab("Interactive Demo"): | |
interface.render() | |
with gr.Tab("API Access"): | |
api_interface.render() | |
gr.Markdown(""" | |
## API Usage Instructions | |
You can use this API endpoint from your applications by sending a POST request: | |
### Method 1 (Latest Gradio API, recommended): | |
``` | |
POST /predict | |
{ | |
"data": ["_base64_encoded_image"] | |
} | |
``` | |
### Method 2 (Standard API): | |
``` | |
POST /api/predict | |
{ | |
"data": ["_base64_encoded_image"] | |
} | |
``` | |
### Method 3 (Legacy format): | |
``` | |
POST /run/predict | |
{ | |
"fn_index": 0, | |
"data": ["_base64_encoded_image"] | |
} | |
``` | |
The response will contain detection results and an annotated image. | |
See README-API.md for more details. | |
""") | |
# Launch with specific configs for API access | |
# In Hugging Face Spaces, use Gradio's default launcher settings | |
app.launch( | |
server_name="0.0.0.0", # Bind to all network interfaces | |
show_api=True, # Enable API endpoints | |
allowed_paths=["*.jpg", "*.png", "*.jpeg"] # Allow access to image files | |
) | |