appvoid commited on
Commit
149fab1
·
verified ·
1 Parent(s): 1008b2a

Update index.html

Browse files
Files changed (1) hide show
  1. index.html +899 -18
index.html CHANGED
@@ -1,19 +1,900 @@
1
- <!doctype html>
2
  <html>
3
- <head>
4
- <meta charset="utf-8" />
5
- <meta name="viewport" content="width=device-width" />
6
- <title>My static Space</title>
7
- <link rel="stylesheet" href="style.css" />
8
- </head>
9
- <body>
10
- <div class="card">
11
- <h1>Welcome to your static Space!</h1>
12
- <p>You can modify this app directly by editing <i>index.html</i> in the Files and versions tab.</p>
13
- <p>
14
- Also don't forget to check the
15
- <a href="https://huggingface.co/docs/hub/spaces" target="_blank">Spaces documentation</a>.
16
- </p>
17
- </div>
18
- </body>
19
- </html>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!DOCTYPE html>
2
  <html>
3
+
4
+ <head>
5
+ <title>Carbono UI</title>
6
+ <style>
7
+ a {
8
+ color: white;
9
+ }
10
+
11
+ body {
12
+ background: #000;
13
+ color: #fff;
14
+ font-family: monospace;
15
+ margin: 0;
16
+ padding: 15px;
17
+ display: flex;
18
+ flex-direction: column;
19
+ gap: 15px;
20
+ overflow-x: hidden;
21
+ }
22
+
23
+ h3 {
24
+ margin: 1.5rem;
25
+ margin-bottom: 0;
26
+ }
27
+
28
+ p {
29
+ margin: 1.5rem;
30
+ margin-top: 0rem;
31
+ color: #777;
32
+ }
33
+
34
+ .grid {
35
+ display: grid;
36
+ grid-template-columns: minmax(400px, 1fr) minmax(300px, 2fr);
37
+ gap: 15px;
38
+ opacity: 0;
39
+ transform: translateY(20px);
40
+ animation: fadeInUp 0.5s ease-out forwards;
41
+ }
42
+
43
+ .widget {
44
+ background: #000;
45
+ border-radius: 10px;
46
+ padding: 15px;
47
+ box-sizing: border-box;
48
+ width: 100%;
49
+ opacity: 0;
50
+ transform: translateY(20px);
51
+ animation: fadeInUp 0.5s ease-out forwards;
52
+ animation-delay: 0.2s;
53
+ }
54
+
55
+ .widget-title {
56
+ font-size: 1.1em;
57
+ margin-bottom: 12px;
58
+ border-bottom: 1px solid #333;
59
+ padding-bottom: 8px;
60
+ opacity: 0;
61
+ transform: translateY(10px);
62
+ animation: fadeInUp 0.5s ease-out forwards;
63
+ animation-delay: 0.3s;
64
+ }
65
+
66
+ .input-group {
67
+ margin-bottom: 12px;
68
+ opacity: 0;
69
+ transform: translateY(10px);
70
+ animation: fadeInUp 0.5s ease-out forwards;
71
+ animation-delay: 0.4s;
72
+ }
73
+
74
+ .settings-grid {
75
+ display: grid;
76
+ grid-template-columns: repeat(auto-fit, minmax(150px, 1fr));
77
+ gap: 10px;
78
+ margin-bottom: 12px;
79
+ opacity: 0;
80
+ transform: translateY(10px);
81
+ animation: fadeInUp 0.5s ease-out forwards;
82
+ animation-delay: 0.5s;
83
+ }
84
+
85
+ input[type="text"],
86
+ input[type="number"],
87
+ select,
88
+ textarea {
89
+ outline: none;
90
+ width: 100%;
91
+ padding: 6px;
92
+ background: #222;
93
+ border: 1px solid #444;
94
+ color: #fff;
95
+ border-radius: 8px;
96
+ margin-top: 4px;
97
+ box-sizing: border-box;
98
+ transition: background 0.3s, border 0.3s;
99
+ }
100
+
101
+ span {
102
+ background-color: white;
103
+ color: black;
104
+ font-weight: 600;
105
+ font-size: 12px;
106
+ padding: 1px;
107
+ border-radius: 3px;
108
+ cursor: pointer;
109
+ }
110
+
111
+ input[type="text"]:focus,
112
+ input[type="number"]:focus,
113
+ select:focus,
114
+ textarea:focus {
115
+ background: #333;
116
+ border: 1px solid #666;
117
+ }
118
+
119
+ button {
120
+ background: #fff;
121
+ color: #000;
122
+ border: none;
123
+ padding: 6px 12px;
124
+ border-radius: 6px;
125
+ cursor: pointer;
126
+ transition: all 0.1s ease;
127
+ border: 1px solid white;
128
+ opacity: 0;
129
+ height: 28px;
130
+ transform: translateY(10px);
131
+ animation: fadeInUp 0.5s ease-out forwards;
132
+ animation-delay: 0.6s;
133
+ }
134
+
135
+ button:hover {
136
+ border: 1px solid white;
137
+ color: white;
138
+ background: #000;
139
+ }
140
+
141
+ .progress-container {
142
+ height: 180px;
143
+ position: relative;
144
+ border: 1px solid #333;
145
+ border-radius: 8px;
146
+ margin-bottom: 10px;
147
+ opacity: 0;
148
+ transform: translateY(10px);
149
+ animation: fadeInUp 0.5s ease-out forwards;
150
+ animation-delay: 0.7s;
151
+ }
152
+
153
+ .loss-graph {
154
+ position: absolute;
155
+ bottom: 0;
156
+ width: 100%;
157
+ height: 100%;
158
+ }
159
+
160
+ .network-graph {
161
+ position: absolute;
162
+ bottom: 0;
163
+ width: 100%;
164
+ height: 100%;
165
+ }
166
+
167
+ .flex-container {
168
+ display: flex;
169
+ gap: 20px;
170
+ opacity: 0;
171
+ transform: translateY(10px);
172
+ animation: fadeInUp 0.5s ease-out forwards;
173
+ animation-delay: 0.8s;
174
+ }
175
+
176
+ .prediction-section,
177
+ .model-section {
178
+ flex: 1;
179
+ }
180
+
181
+ .button-group {
182
+ display: flex;
183
+ gap: 10px;
184
+ opacity: 0;
185
+ transform: translateY(10px);
186
+ animation: fadeInUp 0.5s ease-out forwards;
187
+ animation-delay: 0.9s;
188
+ }
189
+
190
+ .visualization-container {
191
+ margin-top: 15px;
192
+ opacity: 0;
193
+ transform: translateY(10px);
194
+ animation: fadeInUp 0.5s ease-out forwards;
195
+ animation-delay: 1s;
196
+ }
197
+
198
+ .epoch-progress {
199
+ height: 5px;
200
+ background: #222;
201
+ border-radius: 8px;
202
+ overflow: hidden;
203
+ }
204
+
205
+ .epoch-bar {
206
+ height: 100%;
207
+ width: 0;
208
+ background: #fff;
209
+ transition: width 0.3s ease;
210
+ }
211
+
212
+ @keyframes fadeInUp {
213
+ to {
214
+ opacity: 1;
215
+ transform: translateY(0);
216
+ }
217
+ }
218
+
219
+ /* Responsive Design */
220
+ @media (max-width: 768px) {
221
+ .grid {
222
+ grid-template-columns: 1fr;
223
+ }
224
+
225
+ .flex-container {
226
+ flex-direction: column;
227
+ }
228
+ }
229
+ </style>
230
+ </head>
231
+
232
+ <body>
233
+ <h3>playground</h3>
234
+ <p>this is a web app for showcasing carbono, a self-contained micro-library that makes it super easy to play, create and share small neural networks; it's the easiest, hackable machine learning js library; it's also convenient to quickly prototype on embedded devices. to download it and know more you can go to the <a href="https://github.com/appvoid/carbono" target="_blank">github repo</a>; you can see additional training details by opening the console; to load a dummy dataset, <span id="loadDataBtn">click here</span> and then click "train" button.</p>
235
+ <div class="grid">
236
+ <!-- Group 1: Data & Training -->
237
+ <div class="widget">
238
+ <div class="widget-title">model settings</div>
239
+
240
+ <div class="input-group">
241
+ <label>training set:</label>
242
+ <textarea id="trainingData" rows="3" placeholder="1,1,1,0
243
+ 1,0,1,0
244
+ 0,1,0,1"></textarea>
245
+ </div>
246
+ <p>last number represents actual desired output</p>
247
+ <div class="input-group">
248
+ <label>validation set:</label>
249
+ <textarea id="testData" rows="3" placeholder="0,0,0,1"></textarea>
250
+ </div>
251
+
252
+ <div class="settings-grid">
253
+ <div class="input-group">
254
+ <label>epochs:</label>
255
+ <input type="number" id="epochs" value="50">
256
+ </div>
257
+ <div class="input-group">
258
+ <label>learning rate:</label>
259
+ <input type="number" id="learningRate" value="0.1" step="0.001">
260
+ </div>
261
+ <div class="input-group">
262
+ <label>batch size:</label>
263
+ <input type="number" id="batchSize" value="8">
264
+ </div>
265
+ <div class="input-group">
266
+ <label>hidden layers:</label>
267
+ <input type="number" id="numHiddenLayers" value="1">
268
+ </div>
269
+ </div>
270
+
271
+ <!-- New UI Elements for Layer Configuration -->
272
+
273
+ <div id="hiddenLayersConfig"></div>
274
+ </div>
275
+
276
+ <!-- Group 2: Progress & Visualization -->
277
+ <div class="widget">
278
+ <div class="widget-title">training progress</div>
279
+ <div id="progress">
280
+ <div class="progress-container">
281
+ <canvas id="lossGraph" class="loss-graph"></canvas>
282
+ </div>
283
+ <p>training loss is white, validation loss is gray</p>
284
+ <div class="epoch-progress">
285
+ <div id="epochBar" class="epoch-bar"></div>
286
+ </div>
287
+ <div id="stats" style="margin-top: 10px;"></div>
288
+ </div>
289
+ <div class="model-section">
290
+ <br>
291
+ <div class="widget-title">model management</div>
292
+ <p>save the weights to load them on your app or share them on huggingface!</p>
293
+ <div class="button-group">
294
+ <button id="trainButton">train</button>
295
+ <button id="saveButton">save</button>
296
+ <button id="loadButton">load</button>
297
+ <div class="prediction-section">
298
+ <div class="widget-title">prediction</div>
299
+ <p>predict output</p>
300
+ <div class="input-group">
301
+ <label>input:</label>
302
+ <input type="text" id="predictionInput" placeholder="0.4, 0.2, 0.6">
303
+ </div>
304
+ <button id="predictButton">predict</button>
305
+ <div id="predictionResult" style="margin-top: 10px;"></div>
306
+ </div>
307
+ <div class="visualization-container">
308
+ <div class="widget-title">visualization</div>
309
+ <div class="progress-container">
310
+ <canvas id="networkGraph" class="network-graph"></canvas>
311
+ </div>
312
+ <p>internal model's representation</p>
313
+ </div>
314
+ </div>
315
+ </div>
316
+ </div>
317
+ </div>
318
+
319
+ <script>
320
+ // 🧠 carbono: A Fun and Friendly Neural Network Class 🧠
321
+ // This micro-library wraps everything you need to have
322
+ // This is the simplest yet functional feedforward mlp in js
323
+ class carbono {
324
+ constructor(debug = true) {
325
+ this.layers = []; // 📚 Stores info about each layer
326
+ this.weights = []; // ⚖️ Stores weights for each layer
327
+ this.biases = []; // 🔧 Stores biases for each layer
328
+ this.activations = []; // 🚀 Stores activation functions for each layer
329
+ this.details = {}; // 📊 Stores details about the model
330
+ this.debug = debug; // 🐛 Enables or disables debug messages
331
+ }
332
+ // 🏗️ Add a new layer to the neural network
333
+ layer(inputSize, outputSize, activation = 'tanh') {
334
+ // 🧱 Store layer information
335
+ this.layers.push({
336
+ inputSize,
337
+ outputSize,
338
+ activation
339
+ });
340
+ // 🔍 Check if the new layer's input size matches the previous layer's output size
341
+ if (this.weights.length > 0) {
342
+ const lastLayerOutputSize = this.layers[this.layers.length - 2].outputSize;
343
+ if (inputSize !== lastLayerOutputSize) {
344
+ throw new Error('Oops! The input size of the new layer must match the output size of the previous layer.');
345
+ }
346
+ }
347
+ // 🎲 Initialize weights using Xavier/Glorot initialization
348
+ const weights = [];
349
+ for (let i = 0; i < outputSize; i++) {
350
+ const row = [];
351
+ for (let j = 0; j < inputSize; j++) {
352
+ row.push((Math.random() - 0.5) * 2 * Math.sqrt(6 / (inputSize + outputSize)));
353
+ }
354
+ weights.push(row);
355
+ }
356
+ this.weights.push(weights);
357
+ // 🎚️ Initialize biases with small positive values
358
+ const biases = Array(outputSize).fill(0.01);
359
+ this.biases.push(biases);
360
+ // 🚀 Store the activation function for this layer
361
+ this.activations.push(activation);
362
+ }
363
+ // 🧮 Apply the activation function
364
+ activationFunction(x, activation) {
365
+ switch (activation) {
366
+ case 'tanh':
367
+ return Math.tanh(x); // 〰️ Hyperbolic tangent
368
+ case 'sigmoid':
369
+ return 1 / (1 + Math.exp(-x)); // 📈 S-shaped curve
370
+ case 'relu':
371
+ return Math.max(0, x); // 📐 Rectified Linear Unit
372
+ case 'selu':
373
+ const alpha = 1.67326;
374
+ const scale = 1.0507;
375
+ return x > 0 ? scale * x : scale * alpha * (Math.exp(x) - 1); // 🚀 Scaled Exponential Linear Unit
376
+ default:
377
+ throw new Error('Whoops! We don\'t know that activation function.');
378
+ }
379
+ }
380
+ // 📐 Calculate the derivative of the activation function
381
+ activationDerivative(x, activation) {
382
+ switch (activation) {
383
+ case 'tanh':
384
+ return 1 - Math.pow(Math.tanh(x), 2);
385
+ case 'sigmoid':
386
+ const sigmoid = 1 / (1 + Math.exp(-x));
387
+ return sigmoid * (1 - sigmoid);
388
+ case 'relu':
389
+ return x > 0 ? 1 : 0;
390
+ case 'selu':
391
+ const alpha = 1.67326;
392
+ const scale = 1.0507;
393
+ return x > 0 ? scale : scale * alpha * Math.exp(x);
394
+ default:
395
+ throw new Error('Oops! We don\'t know the derivative of that activation function.');
396
+ }
397
+ }
398
+ // 🏋️‍♀️ Train the neural network
399
+ async train(trainSet, options = {}) {
400
+ // 🎛️ Set up training options with default values
401
+ const {
402
+ epochs = 200, // 🔄 Number of times to go through the entire dataset
403
+ learningRate = 0.212, // 📏 How big of steps to take when adjusting weights
404
+ batchSize = 16, // 📦 Number of samples to process before updating weights
405
+ printEveryEpochs = 100, // 🖨️ How often to print progress
406
+ earlyStopThreshold = 1e-6, // 🛑 When to stop if the error is small enough
407
+ testSet = null, // 🧪 Optional test set for evaluation
408
+ callback = null // 📡 Callback function for real-time updates
409
+ } = options;
410
+ const start = Date.now(); // ⏱️ Start the timer
411
+ // 🛡️ Make sure batch size is at least 2
412
+ if (batchSize < 1) batchSize = 2;
413
+ // 🏗️ Automatically create layers if none exist
414
+ if (this.layers.length === 0) {
415
+ const numInputs = trainSet[0].input.length;
416
+ this.layer(numInputs, numInputs, 'tanh');
417
+ this.layer(numInputs, 1, 'tanh');
418
+ }
419
+ let lastTrainLoss = 0;
420
+ let lastTestLoss = null;
421
+ // 🔄 Main training loop
422
+ for (let epoch = 0; epoch < epochs; epoch++) {
423
+ let trainError = 0;
424
+ // 📦 Process data in batches
425
+ for (let b = 0; b < trainSet.length; b += batchSize) {
426
+ const batch = trainSet.slice(b, b + batchSize);
427
+ let batchError = 0;
428
+ // 🧠 Forward pass and backward pass for each item in the batch
429
+ for (const data of batch) {
430
+ // 🏃‍♂️ Forward pass
431
+ const layerInputs = [data.input];
432
+ for (let i = 0; i < this.weights.length; i++) {
433
+ const inputs = layerInputs[i];
434
+ const weights = this.weights[i];
435
+ const biases = this.biases[i];
436
+ const activation = this.activations[i];
437
+ const outputs = [];
438
+ for (let j = 0; j < weights.length; j++) {
439
+ const weight = weights[j];
440
+ let sum = biases[j];
441
+ for (let k = 0; k < inputs.length; k++) {
442
+ sum += inputs[k] * weight[k];
443
+ }
444
+ outputs.push(this.activationFunction(sum, activation));
445
+ }
446
+ layerInputs.push(outputs);
447
+ }
448
+ // 🔙 Backward pass
449
+ const outputLayerIndex = this.weights.length - 1;
450
+ const outputLayerInputs = layerInputs[layerInputs.length - 1];
451
+ const outputErrors = [];
452
+ for (let i = 0; i < outputLayerInputs.length; i++) {
453
+ const error = data.output[i] - outputLayerInputs[i];
454
+ outputErrors.push(error);
455
+ }
456
+ let layerErrors = [outputErrors];
457
+ for (let i = this.weights.length - 2; i >= 0; i--) {
458
+ const nextLayerWeights = this.weights[i + 1];
459
+ const nextLayerErrors = layerErrors[0];
460
+ const currentLayerInputs = layerInputs[i + 1];
461
+ const currentActivation = this.activations[i];
462
+ const errors = [];
463
+ for (let j = 0; j < this.layers[i].outputSize; j++) {
464
+ let error = 0;
465
+ for (let k = 0; k < this.layers[i + 1].outputSize; k++) {
466
+ error += nextLayerErrors[k] * nextLayerWeights[k][j];
467
+ }
468
+ errors.push(error * this.activationDerivative(currentLayerInputs[j], currentActivation));
469
+ }
470
+ layerErrors.unshift(errors);
471
+ }
472
+ // 🔧 Update weights and biases
473
+ for (let i = 0; i < this.weights.length; i++) {
474
+ const inputs = layerInputs[i];
475
+ const errors = layerErrors[i];
476
+ const weights = this.weights[i];
477
+ const biases = this.biases[i];
478
+ for (let j = 0; j < weights.length; j++) {
479
+ const weight = weights[j];
480
+ for (let k = 0; k < inputs.length; k++) {
481
+ weight[k] += learningRate * errors[j] * inputs[k];
482
+ }
483
+ biases[j] += learningRate * errors[j];
484
+ }
485
+ }
486
+ batchError += Math.abs(outputErrors[0]); // Assuming binary output
487
+ }
488
+ trainError += batchError;
489
+ }
490
+ lastTrainLoss = trainError / trainSet.length;
491
+ // 🧪 Evaluate on test set if provided
492
+ if (testSet) {
493
+ let testError = 0;
494
+ for (const data of testSet) {
495
+ const prediction = this.predict(data.input);
496
+ testError += Math.abs(data.output[0] - prediction[0]);
497
+ }
498
+ lastTestLoss = testError / testSet.length;
499
+ }
500
+ // 📢 Print progress if needed
501
+ if ((epoch + 1) % printEveryEpochs === 0 && this.debug === true) {
502
+ console.log(`Epoch ${epoch + 1}, Train Loss: ${lastTrainLoss.toFixed(6)}${testSet ? `, Test Loss: ${lastTestLoss.toFixed(6)}` : ''}`);
503
+ }
504
+ // 📡 Call the callback function with current progress
505
+ if (callback) {
506
+ await callback(epoch + 1, lastTrainLoss, lastTestLoss);
507
+ }
508
+ // Add a small delay to prevent UI freezing
509
+ await new Promise(resolve => setTimeout(resolve, 0));
510
+ // 🛑 Check for early stopping
511
+ if (lastTrainLoss < earlyStopThreshold) {
512
+ console.log(`We stopped at epoch ${epoch + 1} with train loss: ${lastTrainLoss.toFixed(6)}${testSet ? ` and test loss: ${lastTestLoss.toFixed(6)}` : ''}`);
513
+ break;
514
+ }
515
+ }
516
+ const end = Date.now(); // ⏱️ Stop the timer
517
+ // 🧮 Calculate total number of parameters
518
+ let totalParams = 0;
519
+ for (let i = 0; i < this.weights.length; i++) {
520
+ const weightLayer = this.weights[i];
521
+ const biasLayer = this.biases[i];
522
+ totalParams += weightLayer.flat().length + biasLayer.length;
523
+ }
524
+ // 📊 Create a summary of the training
525
+ const trainingSummary = {
526
+ trainLoss: lastTrainLoss,
527
+ testLoss: lastTestLoss,
528
+ parameters: totalParams,
529
+ training: {
530
+ time: end - start,
531
+ epochs,
532
+ learningRate,
533
+ batchSize
534
+ },
535
+ layers: this.layers.map(layer => ({
536
+ inputSize: layer.inputSize,
537
+ outputSize: layer.outputSize,
538
+ activation: layer.activation
539
+ }))
540
+ };
541
+ this.details = trainingSummary;
542
+ return trainingSummary;
543
+ }
544
+ // 🔮 Use the trained network to make predictions
545
+ predict(input) {
546
+ let layerInput = input;
547
+ const allActivations = [input]; // Track all activations through layers
548
+ const allRawValues = []; // Track pre-activation values
549
+ for (let i = 0; i < this.weights.length; i++) {
550
+ const weights = this.weights[i];
551
+ const biases = this.biases[i];
552
+ const activation = this.activations[i];
553
+ const layerOutput = [];
554
+ const rawValues = [];
555
+ for (let j = 0; j < weights.length; j++) {
556
+ const weight = weights[j];
557
+ let sum = biases[j];
558
+ for (let k = 0; k < layerInput.length; k++) {
559
+ sum += layerInput[k] * weight[k];
560
+ }
561
+ rawValues.push(sum);
562
+ layerOutput.push(this.activationFunction(sum, activation));
563
+ }
564
+ allRawValues.push(rawValues);
565
+ allActivations.push(layerOutput);
566
+ layerInput = layerOutput;
567
+ }
568
+ // Store last activation values for visualization
569
+ this.lastActivations = allActivations;
570
+ this.lastRawValues = allRawValues;
571
+ return layerInput;
572
+ }
573
+ // 💾 Save the model to a file
574
+ save(name = 'model') {
575
+ const data = {
576
+ weights: this.weights,
577
+ biases: this.biases,
578
+ activations: this.activations,
579
+ layers: this.layers,
580
+ details: this.details
581
+ };
582
+ const blob = new Blob([JSON.stringify(data)], {
583
+ type: 'application/json'
584
+ });
585
+ const url = URL.createObjectURL(blob);
586
+ const a = document.createElement('a');
587
+ a.href = url;
588
+ a.download = `${name}.json`;
589
+ a.click();
590
+ URL.revokeObjectURL(url);
591
+ }
592
+ // 📂 Load a saved model from a file
593
+ load(callback) {
594
+ const handleListener = (event) => {
595
+ const file = event.target.files[0];
596
+ if (!file) return;
597
+ const reader = new FileReader();
598
+ reader.onload = (event) => {
599
+ const text = event.target.result;
600
+ try {
601
+ const data = JSON.parse(text);
602
+ this.weights = data.weights;
603
+ this.biases = data.biases;
604
+ this.activations = data.activations;
605
+ this.layers = data.layers;
606
+ this.details = data.details;
607
+ callback();
608
+ if (this.debug === true) console.log('Model loaded successfully!');
609
+ input.removeEventListener('change', handleListener);
610
+ input.remove();
611
+ } catch (e) {
612
+ input.removeEventListener('change', handleListener);
613
+ input.remove();
614
+ if (this.debug === true) console.error('Failed to load model:', e);
615
+ }
616
+ };
617
+ reader.readAsText(file);
618
+ };
619
+ const input = document.createElement('input');
620
+ input.type = 'file';
621
+ input.accept = '.json';
622
+ input.style.opacity = '0';
623
+ document.body.append(input);
624
+ input.addEventListener('change', handleListener.bind(this));
625
+ input.click();
626
+ }
627
+ }
628
+ document.getElementById("loadDataBtn").onclick = () => {
629
+ document.getElementById('trainingData').value = `1.0, 0.0, 0.0, 0.0
630
+ 0.7, 0.7, 0.8, 1
631
+ 0.0, 1.0, 0.0, 0.5`
632
+ document.getElementById('testData').value = `0.4, 0.2, 0.6, 1.0
633
+ 0.2, 0.82, 0.83, 1.0`
634
+ }
635
+ // Interface code
636
+ const nn = new carbono();
637
+ let lossHistory = [];
638
+ const ctx = document.getElementById('lossGraph').getContext('2d');
639
+
640
+ function parseCSV(csv) {
641
+ return csv.trim().split('\n').map(row => {
642
+ const values = row.split(',').map(Number);
643
+ return {
644
+ input: values.slice(0, -1),
645
+ output: [values[values.length - 1]]
646
+ };
647
+ });
648
+ }
649
+
650
+ function drawLossGraph() {
651
+ ctx.clearRect(0, 0, ctx.canvas.width, ctx.canvas.height);
652
+ const width = ctx.canvas.width;
653
+ const height = ctx.canvas.height;
654
+ // Combine train and test losses to find overall max for scaling
655
+ const maxLoss = Math.max(
656
+ ...lossHistory.map(loss => Math.max(loss.train, loss.test || 0))
657
+ );
658
+ // Draw training loss (white line)
659
+ ctx.strokeStyle = '#fff';
660
+ ctx.beginPath();
661
+ lossHistory.forEach((loss, i) => {
662
+ const x = (i / (lossHistory.length - 1)) * width;
663
+ const y = height - (loss.train / maxLoss) * height;
664
+ if (i === 0) ctx.moveTo(x, y);
665
+ else ctx.lineTo(x, y);
666
+ });
667
+ ctx.stroke();
668
+ // Draw test loss (gray line)
669
+ ctx.strokeStyle = '#777';
670
+ ctx.beginPath();
671
+ lossHistory.forEach((loss, i) => {
672
+ if (loss.test !== undefined) {
673
+ const x = (i / (lossHistory.length - 1)) * width;
674
+ const y = height - (loss.test / maxLoss) * height;
675
+ if (i === 0 || lossHistory[i - 1].test === undefined) ctx.moveTo(x, y);
676
+ else ctx.lineTo(x, y);
677
+ }
678
+ });
679
+ ctx.stroke();
680
+ }
681
+
682
+ function createLayerConfigUI(numLayers) {
683
+ const container = document.getElementById('hiddenLayersConfig');
684
+ container.innerHTML = ''; // Clear previous UI
685
+ for (let i = 0; i < numLayers; i++) {
686
+ const group = document.createElement('div');
687
+ group.className = 'input-group';
688
+ const label = document.createElement('label');
689
+ label.textContent = `layer ${i + 1} nodes:`;
690
+ const input = document.createElement('input');
691
+ input.type = 'number';
692
+ input.value = 5;
693
+ input.dataset.layerIndex = i;
694
+ const activationLabel = document.createElement('label');
695
+ activationLabel.innerHTML = `<br>activation:`;
696
+ const activationSelect = document.createElement('select');
697
+ const activations = ['tanh', 'sigmoid', 'relu', 'selu'];
698
+ activations.forEach(act => {
699
+ const option = document.createElement('option');
700
+ option.value = act;
701
+ option.textContent = act;
702
+ activationSelect.appendChild(option);
703
+ });
704
+ activationSelect.dataset.layerIndex = i;
705
+ group.appendChild(label);
706
+ group.appendChild(input);
707
+ group.appendChild(activationLabel);
708
+ group.appendChild(activationSelect);
709
+ container.appendChild(group);
710
+ }
711
+ }
712
+ document.getElementById('numHiddenLayers').addEventListener('change', (event) => {
713
+ const numLayers = parseInt(event.target.value);
714
+ createLayerConfigUI(numLayers);
715
+ });
716
+ createLayerConfigUI(document.getElementById('numHiddenLayers').value);
717
+ document.getElementById('trainButton').addEventListener('click', async () => {
718
+ lossHistory = []; // Initialize as empty array
719
+ const trainingData = parseCSV(document.getElementById('trainingData').value);
720
+ const testData = parseCSV(document.getElementById('testData').value);
721
+ lossHistory = [];
722
+ document.getElementById('stats').innerHTML = '';
723
+ const numHiddenLayers = parseInt(document.getElementById('numHiddenLayers').value);
724
+ const layerConfigs = [];
725
+ for (let i = 0; i < numHiddenLayers; i++) {
726
+ const sizeInput = document.querySelector(`input[data-layer-index="${i}"]`);
727
+ const activationSelect = document.querySelector(`select[data-layer-index="${i}"]`);
728
+ layerConfigs.push({
729
+ size: parseInt(sizeInput.value),
730
+ activation: activationSelect.value
731
+ });
732
+ }
733
+ nn.layers = []; // Reset layers
734
+ nn.weights = [];
735
+ nn.biases = [];
736
+ nn.activations = [];
737
+ const numInputs = trainingData[0].input.length;
738
+ nn.layer(numInputs, layerConfigs[0].size, layerConfigs[0].activation);
739
+ for (let i = 1; i < layerConfigs.length; i++) {
740
+ nn.layer(layerConfigs[i - 1].size, layerConfigs[i].size, layerConfigs[i].activation);
741
+ }
742
+ nn.layer(layerConfigs[layerConfigs.length - 1].size, 1, 'tanh'); // Output layer
743
+ const options = {
744
+ epochs: parseInt(document.getElementById('epochs').value),
745
+ learningRate: parseFloat(document.getElementById('learningRate').value),
746
+ batchSize: parseInt(document.getElementById('batchSize').value),
747
+ printEveryEpochs: 1,
748
+ testSet: testData.length > 0 ? testData : null,
749
+ callback: async (epoch, trainLoss, testLoss) => {
750
+ lossHistory.push({
751
+ train: trainLoss,
752
+ test: testLoss
753
+ });
754
+ drawLossGraph();
755
+ document.getElementById('epochBar').style.width =
756
+ `${(epoch / options.epochs) * 100}%`;
757
+ document.getElementById('stats').innerHTML =
758
+ `<p>• current epoch: ${epoch}/${options.epochs}` +
759
+ `<br> • train/val loss: ${trainLoss.toFixed(6)}` +
760
+ (testLoss ? ` | ${testLoss.toFixed(6)}</p>` : '');
761
+ }
762
+ }
763
+ try {
764
+ const trainButton = document.getElementById('trainButton');
765
+ trainButton.disabled = true;
766
+ trainButton.textContent = 'training...';
767
+ const summary = await nn.train(trainingData, options);
768
+ trainButton.disabled = false;
769
+ trainButton.textContent = 'train';
770
+ // Display final summary
771
+ document.getElementById('stats').innerHTML += '<strong>Model trained</strong>';
772
+ } catch (error) {
773
+ console.error('Training error:', error);
774
+ document.getElementById('trainButton').disabled = false;
775
+ document.getElementById('trainButton').textContent = 'train';
776
+ }
777
+ });
778
+
779
+ function drawNetwork() {
780
+ const canvas = document.getElementById('networkGraph');
781
+ const ctx = canvas.getContext('2d');
782
+ ctx.clearRect(0, 0, canvas.width, canvas.height);
783
+ if (!nn.lastActivations) return; // Don't draw if no predictions made yet
784
+ const padding = 40;
785
+ const width = canvas.width - padding * 2;
786
+ const height = canvas.height - padding * 2;
787
+ // Calculate node positions
788
+ const layerPositions = [];
789
+ // Add input layer explicitly
790
+ const inputLayer = [];
791
+ const inputX = padding;
792
+ const inputSize = nn.layers[0].inputSize;
793
+ for (let i = 0; i < inputSize; i++) {
794
+ const inputY = padding + (height * i) / (inputSize - 1);
795
+ inputLayer.push({
796
+ x: inputX,
797
+ y: inputY,
798
+ value: nn.lastActivations[0][i]
799
+ });
800
+ }
801
+ layerPositions.push(inputLayer);
802
+ // Add hidden layers
803
+ for (let i = 1; i < nn.lastActivations.length - 1; i++) {
804
+ const layer = nn.lastActivations[i];
805
+ const layerNodes = [];
806
+ const layerX = padding + (width * i) / (nn.lastActivations.length - 1);
807
+ for (let j = 0; j < layer.length; j++) {
808
+ const nodeY = padding + (height * j) / (layer.length - 1);
809
+ layerNodes.push({
810
+ x: layerX,
811
+ y: nodeY,
812
+ value: layer[j]
813
+ });
814
+ }
815
+ layerPositions.push(layerNodes);
816
+ }
817
+ // Add output layer explicitly
818
+ const outputLayer = [];
819
+ const outputX = canvas.width - padding;
820
+ const outputY = padding + height / 2; // Center the output node
821
+ outputLayer.push({
822
+ x: outputX,
823
+ y: outputY,
824
+ value: nn.lastActivations[nn.lastActivations.length - 1][0]
825
+ });
826
+ layerPositions.push(outputLayer);
827
+ // Draw connections
828
+ ctx.lineWidth = 1;
829
+ for (let i = 0; i < layerPositions.length - 1; i++) {
830
+ const currentLayer = layerPositions[i];
831
+ const nextLayer = layerPositions[i + 1];
832
+ const weights = nn.weights[i];
833
+ for (let j = 0; j < currentLayer.length; j++) {
834
+ const nextLayerSize = nextLayer.length;
835
+ for (let k = 0; k < nextLayerSize; k++) {
836
+ const weight = weights[k][j];
837
+ const signal = Math.abs(currentLayer[j].value * weight);
838
+ const opacity = Math.min(Math.max(signal, 0.01), 1);
839
+ ctx.strokeStyle = `rgba(255, 255, 255, ${opacity})`;
840
+ ctx.beginPath();
841
+ ctx.moveTo(currentLayer[j].x, currentLayer[j].y);
842
+ ctx.lineTo(nextLayer[k].x, nextLayer[k].y);
843
+ ctx.stroke();
844
+ }
845
+ }
846
+ }
847
+ // Draw nodes
848
+ for (const layer of layerPositions) {
849
+ for (const node of layer) {
850
+ const value = Math.abs(node.value);
851
+ const radius = 4;
852
+ // Node fill
853
+ ctx.fillStyle = `rgba(255, 255, 255, ${Math.min(Math.max(value, 0.2), 1)})`;
854
+ ctx.beginPath();
855
+ ctx.arc(node.x, node.y, radius, 0, Math.PI * 2);
856
+ ctx.fill();
857
+ // Node border
858
+ ctx.strokeStyle = 'rgba(255, 255, 255, 1.0)';
859
+ ctx.lineWidth = 1;
860
+ ctx.stroke();
861
+ }
862
+ }
863
+ }
864
+ // Modify the predict button event listener
865
+ document.getElementById('predictButton').addEventListener('click', () => {
866
+ const input = document.getElementById('predictionInput').value
867
+ .split(',').map(Number);
868
+ const prediction = nn.predict(input);
869
+ document.getElementById('predictionResult').innerHTML =
870
+ `Prediction: ${prediction[0].toFixed(6)}`;
871
+ drawNetwork(); // Draw the network visualization
872
+ });
873
+ // Add network canvas resize handling
874
+ function resizeCanvases() {
875
+ const lossCanvas = document.getElementById('lossGraph');
876
+ const networkCanvas = document.getElementById('networkGraph');
877
+ lossCanvas.width = lossCanvas.parentElement.clientWidth;
878
+ lossCanvas.height = lossCanvas.parentElement.clientHeight;
879
+ networkCanvas.width = networkCanvas.parentElement.clientWidth;
880
+ networkCanvas.height = networkCanvas.parentElement.clientHeight;
881
+ drawNetwork(); // Redraw network when canvas is resized
882
+ }
883
+ window.addEventListener('resize', resizeCanvases);
884
+ resizeCanvases();
885
+ // Save button functionality
886
+ document.getElementById('saveButton').addEventListener('click', () => {
887
+ nn.save('model');
888
+ });
889
+ // Load button functionality
890
+ document.getElementById('loadButton').addEventListener('click', () => {
891
+ nn.load(() => {
892
+ console.log('Model loaded successfully!');
893
+ // Optionally, you can add a message to the UI indicating that the model has been loaded
894
+ document.getElementById('stats').innerHTML += '<p><strong>Model loaded successfully!</strong></p>';
895
+ });
896
+ });
897
+ </script>
898
+ </body>
899
+
900
+ </html>