import os from threading import Thread from typing import Iterator import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("gpt2") model = AutoModelForCausalLM.from_pretrained("gpt2") @spaces.GPU def text_generation(input_text, seed): input_ids = tokenizer(input_text, return_tensors="pt").input_ids torch.manual_seed(seed) # Max value: 18446744073709551615 outputs = model.generate(input_ids, do_sample=True, max_length=100) generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True) return generated_text title = "palmer demo" description = "Text completion app by appvoid" gr.Interface( text_generation, [gr.inputs.Textbox(lines=2, label="Enter input text"), gr.inputs.Number(default=10, label="Enter seed number")], [gr.outputs.Textbox(type="auto", label="Text Generated")], title=title, description=description, theme="huggingface" ).launch()