Spaces:
Running
Running
Update index.html
Browse files- index.html +1373 -18
index.html
CHANGED
@@ -1,19 +1,1374 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
</html>
|
|
|
1 |
+
<!-- PPO Simulation By Pejman Ebrahimi -->
|
2 |
+
<!DOCTYPE html>
|
3 |
+
<html lang="en">
|
4 |
+
<head>
|
5 |
+
<meta charset="UTF-8" />
|
6 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
7 |
+
<title>PPO Reinforcement Learning Simulation</title>
|
8 |
+
<style>
|
9 |
+
body {
|
10 |
+
font-family: Arial, sans-serif;
|
11 |
+
margin: 0;
|
12 |
+
padding: 20px;
|
13 |
+
line-height: 1.6;
|
14 |
+
color: #333;
|
15 |
+
background-color: #f8f9fa;
|
16 |
+
}
|
17 |
+
.container {
|
18 |
+
max-width: 1000px;
|
19 |
+
margin: 0 auto;
|
20 |
+
background-color: white;
|
21 |
+
padding: 20px;
|
22 |
+
border-radius: 8px;
|
23 |
+
box-shadow: 0 2px 10px rgba(0, 0, 0, 0.1);
|
24 |
+
}
|
25 |
+
h1,
|
26 |
+
h2,
|
27 |
+
h3 {
|
28 |
+
color: #2c3e50;
|
29 |
+
}
|
30 |
+
h1 {
|
31 |
+
text-align: center;
|
32 |
+
margin-bottom: 30px;
|
33 |
+
border-bottom: 2px solid #3498db;
|
34 |
+
padding-bottom: 10px;
|
35 |
+
}
|
36 |
+
.grid-container {
|
37 |
+
display: grid;
|
38 |
+
grid-template-columns: repeat(10, 1fr);
|
39 |
+
gap: 2px;
|
40 |
+
margin: 20px 0;
|
41 |
+
}
|
42 |
+
.cell {
|
43 |
+
width: 100%;
|
44 |
+
aspect-ratio: 1;
|
45 |
+
background-color: #ecf0f1;
|
46 |
+
display: flex;
|
47 |
+
align-items: center;
|
48 |
+
justify-content: center;
|
49 |
+
cursor: pointer;
|
50 |
+
position: relative;
|
51 |
+
transition: all 0.3s;
|
52 |
+
}
|
53 |
+
.agent {
|
54 |
+
background-color: #3498db;
|
55 |
+
border-radius: 50%;
|
56 |
+
width: 80%;
|
57 |
+
height: 80%;
|
58 |
+
position: absolute;
|
59 |
+
}
|
60 |
+
.goal {
|
61 |
+
background-color: #2ecc71;
|
62 |
+
width: 80%;
|
63 |
+
height: 80%;
|
64 |
+
position: absolute;
|
65 |
+
}
|
66 |
+
.obstacle {
|
67 |
+
background-color: #e74c3c;
|
68 |
+
width: 80%;
|
69 |
+
height: 80%;
|
70 |
+
position: absolute;
|
71 |
+
}
|
72 |
+
.panel {
|
73 |
+
background-color: #f5f7f9;
|
74 |
+
padding: 15px;
|
75 |
+
border-radius: 5px;
|
76 |
+
margin-bottom: 20px;
|
77 |
+
border: 1px solid #ddd;
|
78 |
+
}
|
79 |
+
.controls {
|
80 |
+
display: flex;
|
81 |
+
gap: 10px;
|
82 |
+
flex-wrap: wrap;
|
83 |
+
margin: 20px 0;
|
84 |
+
}
|
85 |
+
button {
|
86 |
+
padding: 8px 15px;
|
87 |
+
background-color: #3498db;
|
88 |
+
color: white;
|
89 |
+
border: none;
|
90 |
+
border-radius: 4px;
|
91 |
+
cursor: pointer;
|
92 |
+
transition: background-color 0.3s;
|
93 |
+
}
|
94 |
+
button:hover {
|
95 |
+
background-color: #2980b9;
|
96 |
+
}
|
97 |
+
button:disabled {
|
98 |
+
background-color: #95a5a6;
|
99 |
+
cursor: not-allowed;
|
100 |
+
}
|
101 |
+
.sliders {
|
102 |
+
display: flex;
|
103 |
+
flex-direction: column;
|
104 |
+
gap: 10px;
|
105 |
+
margin: 15px 0;
|
106 |
+
}
|
107 |
+
.slider-container {
|
108 |
+
display: flex;
|
109 |
+
align-items: center;
|
110 |
+
}
|
111 |
+
.slider-container label {
|
112 |
+
flex: 1;
|
113 |
+
min-width: 180px;
|
114 |
+
}
|
115 |
+
.slider-container input {
|
116 |
+
flex: 2;
|
117 |
+
}
|
118 |
+
.slider-value {
|
119 |
+
flex: 0 0 50px;
|
120 |
+
text-align: right;
|
121 |
+
}
|
122 |
+
#log-container {
|
123 |
+
max-height: 200px;
|
124 |
+
overflow-y: auto;
|
125 |
+
background-color: #2c3e50;
|
126 |
+
color: #ecf0f1;
|
127 |
+
padding: 10px;
|
128 |
+
border-radius: 4px;
|
129 |
+
margin-top: 20px;
|
130 |
+
font-family: monospace;
|
131 |
+
}
|
132 |
+
.log-entry {
|
133 |
+
margin: 5px 0;
|
134 |
+
}
|
135 |
+
.tab-container {
|
136 |
+
margin-top: 20px;
|
137 |
+
}
|
138 |
+
.tab-buttons {
|
139 |
+
display: flex;
|
140 |
+
border-bottom: 1px solid #ddd;
|
141 |
+
}
|
142 |
+
.tab-button {
|
143 |
+
padding: 10px 20px;
|
144 |
+
background-color: #f1f1f1;
|
145 |
+
border: none;
|
146 |
+
cursor: pointer;
|
147 |
+
transition: background-color 0.3s;
|
148 |
+
}
|
149 |
+
.tab-button.active {
|
150 |
+
background-color: #3498db;
|
151 |
+
color: white;
|
152 |
+
}
|
153 |
+
.tab-content {
|
154 |
+
display: none;
|
155 |
+
padding: 15px;
|
156 |
+
border: 1px solid #ddd;
|
157 |
+
border-top: none;
|
158 |
+
animation: fadeIn 0.5s;
|
159 |
+
}
|
160 |
+
.tab-content.active {
|
161 |
+
display: block;
|
162 |
+
}
|
163 |
+
#policy-display {
|
164 |
+
width: 100%;
|
165 |
+
height: 300px;
|
166 |
+
overflow: auto;
|
167 |
+
margin-top: 10px;
|
168 |
+
}
|
169 |
+
.policy-grid {
|
170 |
+
display: grid;
|
171 |
+
grid-template-columns: repeat(10, 1fr);
|
172 |
+
gap: 2px;
|
173 |
+
}
|
174 |
+
.policy-cell {
|
175 |
+
aspect-ratio: 1;
|
176 |
+
border: 1px solid #ddd;
|
177 |
+
padding: 2px;
|
178 |
+
font-size: 10px;
|
179 |
+
display: flex;
|
180 |
+
flex-direction: column;
|
181 |
+
align-items: center;
|
182 |
+
justify-content: center;
|
183 |
+
}
|
184 |
+
.arrow {
|
185 |
+
width: 0;
|
186 |
+
height: 0;
|
187 |
+
border-style: solid;
|
188 |
+
margin: 2px;
|
189 |
+
}
|
190 |
+
.arrow-up {
|
191 |
+
border-width: 0 4px 8px 4px;
|
192 |
+
border-color: transparent transparent #3498db transparent;
|
193 |
+
}
|
194 |
+
.arrow-right {
|
195 |
+
border-width: 4px 0 4px 8px;
|
196 |
+
border-color: transparent transparent transparent #3498db;
|
197 |
+
}
|
198 |
+
.arrow-down {
|
199 |
+
border-width: 8px 4px 0 4px;
|
200 |
+
border-color: #3498db transparent transparent transparent;
|
201 |
+
}
|
202 |
+
.arrow-left {
|
203 |
+
border-width: 4px 8px 4px 0;
|
204 |
+
border-color: transparent #3498db transparent transparent;
|
205 |
+
}
|
206 |
+
.progress-container {
|
207 |
+
margin-top: 10px;
|
208 |
+
background-color: #f1f1f1;
|
209 |
+
border-radius: 5px;
|
210 |
+
height: 20px;
|
211 |
+
position: relative;
|
212 |
+
}
|
213 |
+
.progress-bar {
|
214 |
+
height: 100%;
|
215 |
+
background-color: #3498db;
|
216 |
+
border-radius: 5px;
|
217 |
+
width: 0%;
|
218 |
+
transition: width 0.3s;
|
219 |
+
}
|
220 |
+
.chart-container {
|
221 |
+
height: 300px;
|
222 |
+
margin: 15px 0;
|
223 |
+
}
|
224 |
+
@keyframes fadeIn {
|
225 |
+
from {
|
226 |
+
opacity: 0;
|
227 |
+
}
|
228 |
+
to {
|
229 |
+
opacity: 1;
|
230 |
+
}
|
231 |
+
}
|
232 |
+
.popup {
|
233 |
+
display: none;
|
234 |
+
position: fixed;
|
235 |
+
top: 50%;
|
236 |
+
left: 50%;
|
237 |
+
transform: translate(-50%, -50%);
|
238 |
+
background-color: white;
|
239 |
+
padding: 20px;
|
240 |
+
border-radius: 8px;
|
241 |
+
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.2);
|
242 |
+
z-index: 1000;
|
243 |
+
max-width: 80%;
|
244 |
+
max-height: 80%;
|
245 |
+
overflow-y: auto;
|
246 |
+
}
|
247 |
+
.popup-overlay {
|
248 |
+
display: none;
|
249 |
+
position: fixed;
|
250 |
+
top: 0;
|
251 |
+
left: 0;
|
252 |
+
width: 100%;
|
253 |
+
height: 100%;
|
254 |
+
background-color: rgba(0, 0, 0, 0.5);
|
255 |
+
z-index: 999;
|
256 |
+
}
|
257 |
+
.reward-display {
|
258 |
+
font-weight: bold;
|
259 |
+
font-size: 1.2em;
|
260 |
+
text-align: center;
|
261 |
+
margin: 10px 0;
|
262 |
+
}
|
263 |
+
.explanation {
|
264 |
+
background-color: #e8f4fc;
|
265 |
+
padding: 15px;
|
266 |
+
border-radius: 5px;
|
267 |
+
margin: 10px 0;
|
268 |
+
border-left: 4px solid #3498db;
|
269 |
+
}
|
270 |
+
.highlight {
|
271 |
+
background-color: #fffacd;
|
272 |
+
padding: 2px 4px;
|
273 |
+
border-radius: 3px;
|
274 |
+
}
|
275 |
+
.concept-box {
|
276 |
+
border: 1px solid #ddd;
|
277 |
+
margin: 15px 0;
|
278 |
+
border-radius: 5px;
|
279 |
+
overflow: hidden;
|
280 |
+
}
|
281 |
+
.concept-title {
|
282 |
+
background-color: #3498db;
|
283 |
+
color: white;
|
284 |
+
padding: 10px;
|
285 |
+
margin: 0;
|
286 |
+
}
|
287 |
+
.concept-content {
|
288 |
+
padding: 15px;
|
289 |
+
}
|
290 |
+
</style>
|
291 |
+
</head>
|
292 |
+
<body>
|
293 |
+
<div class="container">
|
294 |
+
<h1>Proximal Policy Optimization (PPO) Simulation</h1>
|
295 |
+
|
296 |
+
<div class="explanation">
|
297 |
+
<p>
|
298 |
+
This simulation demonstrates how an agent learns to navigate to a goal
|
299 |
+
using <strong>Proximal Policy Optimization (PPO)</strong>. PPO is an
|
300 |
+
on-policy reinforcement learning algorithm that uses a "clipping"
|
301 |
+
mechanism to prevent large policy updates, making training more stable
|
302 |
+
and efficient.
|
303 |
+
</p>
|
304 |
+
</div>
|
305 |
+
|
306 |
+
<div class="tab-container">
|
307 |
+
<div class="tab-buttons">
|
308 |
+
<button class="tab-button active" onclick="openTab('simulation-tab')">
|
309 |
+
Simulation
|
310 |
+
</button>
|
311 |
+
<button class="tab-button" onclick="openTab('concepts-tab')">
|
312 |
+
PPO Concepts
|
313 |
+
</button>
|
314 |
+
<button class="tab-button" onclick="openTab('metrics-tab')">
|
315 |
+
Training Metrics
|
316 |
+
</button>
|
317 |
+
</div>
|
318 |
+
|
319 |
+
<div id="simulation-tab" class="tab-content active">
|
320 |
+
<div class="panel">
|
321 |
+
<h3>Environment</h3>
|
322 |
+
<p>
|
323 |
+
The agent (blue) must navigate to the goal (green) while avoiding
|
324 |
+
obstacles (red).
|
325 |
+
</p>
|
326 |
+
<div class="grid-container" id="grid"></div>
|
327 |
+
<div class="reward-display">
|
328 |
+
Total Reward: <span id="reward-value">0</span>
|
329 |
+
</div>
|
330 |
+
</div>
|
331 |
+
|
332 |
+
<div class="controls">
|
333 |
+
<button id="start-btn" onclick="startTraining()">
|
334 |
+
Start Training
|
335 |
+
</button>
|
336 |
+
<button id="reset-btn" onclick="resetEnvironment()">
|
337 |
+
Reset Environment
|
338 |
+
</button>
|
339 |
+
<button id="step-btn" onclick="stepTraining()" disabled>
|
340 |
+
Step Forward
|
341 |
+
</button>
|
342 |
+
<button id="place-obstacle-btn" onclick="toggleObstaclePlacement()">
|
343 |
+
Place Obstacles
|
344 |
+
</button>
|
345 |
+
<button id="animation-speed-btn" onclick="toggleAnimationSpeed()">
|
346 |
+
Animation Speed: Normal
|
347 |
+
</button>
|
348 |
+
</div>
|
349 |
+
|
350 |
+
<div class="panel">
|
351 |
+
<h3>PPO Parameters</h3>
|
352 |
+
<div class="sliders">
|
353 |
+
<div class="slider-container">
|
354 |
+
<label for="clip-ratio">Clip Ratio (ε):</label>
|
355 |
+
<input
|
356 |
+
type="range"
|
357 |
+
id="clip-ratio"
|
358 |
+
min="0.05"
|
359 |
+
max="0.5"
|
360 |
+
step="0.05"
|
361 |
+
value="0.2"
|
362 |
+
oninput="updateSliderValue('clip-ratio')"
|
363 |
+
/>
|
364 |
+
<span class="slider-value" id="clip-ratio-value">0.2</span>
|
365 |
+
</div>
|
366 |
+
<div class="slider-container">
|
367 |
+
<label for="learning-rate">Learning Rate:</label>
|
368 |
+
<input
|
369 |
+
type="range"
|
370 |
+
id="learning-rate"
|
371 |
+
min="0.01"
|
372 |
+
max="1"
|
373 |
+
step="0.01"
|
374 |
+
value="0.1"
|
375 |
+
oninput="updateSliderValue('learning-rate')"
|
376 |
+
/>
|
377 |
+
<span class="slider-value" id="learning-rate-value">0.1</span>
|
378 |
+
</div>
|
379 |
+
<div class="slider-container">
|
380 |
+
<label for="epochs">PPO Epochs per Update:</label>
|
381 |
+
<input
|
382 |
+
type="range"
|
383 |
+
id="epochs"
|
384 |
+
min="1"
|
385 |
+
max="10"
|
386 |
+
step="1"
|
387 |
+
value="4"
|
388 |
+
oninput="updateSliderValue('epochs')"
|
389 |
+
/>
|
390 |
+
<span class="slider-value" id="epochs-value">4</span>
|
391 |
+
</div>
|
392 |
+
</div>
|
393 |
+
</div>
|
394 |
+
|
395 |
+
<div class="panel">
|
396 |
+
<h3>Policy Visualization</h3>
|
397 |
+
<p>
|
398 |
+
This shows the current policy of the agent (arrows indicate
|
399 |
+
preferred actions in each state).
|
400 |
+
</p>
|
401 |
+
<div id="policy-display">
|
402 |
+
<div class="policy-grid" id="policy-grid"></div>
|
403 |
+
</div>
|
404 |
+
</div>
|
405 |
+
|
406 |
+
<div id="log-container"></div>
|
407 |
+
</div>
|
408 |
+
|
409 |
+
<div id="concepts-tab" class="tab-content">
|
410 |
+
<div class="concept-box">
|
411 |
+
<h3 class="concept-title">What is PPO?</h3>
|
412 |
+
<div class="concept-content">
|
413 |
+
<p>
|
414 |
+
Proximal Policy Optimization (PPO) is a policy gradient method
|
415 |
+
for reinforcement learning developed by OpenAI in 2017. It has
|
416 |
+
become one of the most popular RL algorithms due to its
|
417 |
+
simplicity and effectiveness.
|
418 |
+
</p>
|
419 |
+
<p>PPO aims to balance two objectives:</p>
|
420 |
+
<ul>
|
421 |
+
<li>Improving the agent's policy to maximize rewards</li>
|
422 |
+
<li>
|
423 |
+
Preventing large policy updates that could destabilize
|
424 |
+
training
|
425 |
+
</li>
|
426 |
+
</ul>
|
427 |
+
</div>
|
428 |
+
</div>
|
429 |
+
|
430 |
+
<div class="concept-box">
|
431 |
+
<h3 class="concept-title">Key Innovations in PPO</h3>
|
432 |
+
<div class="concept-content">
|
433 |
+
<p>
|
434 |
+
The central innovation in PPO is the
|
435 |
+
<strong>clipped surrogate objective function</strong>:
|
436 |
+
</p>
|
437 |
+
<p style="text-align: center">
|
438 |
+
L<sup>CLIP</sup>(θ) = E[min(r<sub>t</sub>(θ)A<sub>t</sub>,
|
439 |
+
clip(r<sub>t</sub>(θ), 1-ε, 1+ε)A<sub>t</sub>)]
|
440 |
+
</p>
|
441 |
+
<p>where:</p>
|
442 |
+
<ul>
|
443 |
+
<li>
|
444 |
+
<strong>r<sub>t</sub>(θ)</strong> is the ratio of
|
445 |
+
probabilities under new and old policies
|
446 |
+
</li>
|
447 |
+
<li>
|
448 |
+
<strong>A<sub>t</sub></strong> is the advantage estimate
|
449 |
+
</li>
|
450 |
+
<li>
|
451 |
+
<strong>ε</strong> is the clipping parameter (usually 0.1 or
|
452 |
+
0.2)
|
453 |
+
</li>
|
454 |
+
</ul>
|
455 |
+
<p>
|
456 |
+
The clipping mechanism ensures that the policy update stays
|
457 |
+
within a "trust region" by limiting how much the new policy can
|
458 |
+
deviate from the old one.
|
459 |
+
</p>
|
460 |
+
</div>
|
461 |
+
</div>
|
462 |
+
|
463 |
+
<div class="concept-box">
|
464 |
+
<h3 class="concept-title">How PPO Works in This Simulation</h3>
|
465 |
+
<div class="concept-content">
|
466 |
+
<ol>
|
467 |
+
<li>
|
468 |
+
The agent collects experience by interacting with the
|
469 |
+
environment using its current policy
|
470 |
+
</li>
|
471 |
+
<li>Advantages are computed for each state-action pair</li>
|
472 |
+
<li>
|
473 |
+
The policy is updated using the clipped surrogate objective
|
474 |
+
</li>
|
475 |
+
<li>
|
476 |
+
Multiple optimization epochs are performed on the same batch
|
477 |
+
of data
|
478 |
+
</li>
|
479 |
+
<li>The process repeats with the new policy</li>
|
480 |
+
</ol>
|
481 |
+
<p>
|
482 |
+
You can observe these steps in action in the simulation tab by
|
483 |
+
watching the policy visualization and training metrics.
|
484 |
+
</p>
|
485 |
+
</div>
|
486 |
+
</div>
|
487 |
+
|
488 |
+
<div class="concept-box">
|
489 |
+
<h3 class="concept-title">PPO vs. Other RL Algorithms</h3>
|
490 |
+
<div class="concept-content">
|
491 |
+
<p>PPO improves upon earlier algorithms in several ways:</p>
|
492 |
+
<ul>
|
493 |
+
<li>
|
494 |
+
<strong>vs. REINFORCE:</strong> More stable training due to
|
495 |
+
advantage estimation and clipping
|
496 |
+
</li>
|
497 |
+
<li>
|
498 |
+
<strong>vs. TRPO:</strong> Simpler implementation while
|
499 |
+
maintaining similar performance
|
500 |
+
</li>
|
501 |
+
<li>
|
502 |
+
<strong>vs. A2C/A3C:</strong> Better sample efficiency and
|
503 |
+
more stable policy updates
|
504 |
+
</li>
|
505 |
+
<li>
|
506 |
+
<strong>vs. Off-policy algorithms (DQN, DDPG):</strong> Less
|
507 |
+
sensitive to hyperparameters and often more stable
|
508 |
+
</li>
|
509 |
+
</ul>
|
510 |
+
</div>
|
511 |
+
</div>
|
512 |
+
</div>
|
513 |
+
|
514 |
+
<div id="metrics-tab" class="tab-content">
|
515 |
+
<div class="panel">
|
516 |
+
<h3>Training Progress</h3>
|
517 |
+
<div class="progress-container">
|
518 |
+
<div class="progress-bar" id="training-progress"></div>
|
519 |
+
</div>
|
520 |
+
<p id="episode-counter">Episodes: 0 / 100</p>
|
521 |
+
</div>
|
522 |
+
|
523 |
+
<div class="panel">
|
524 |
+
<h3>Reward Over Time</h3>
|
525 |
+
<div class="chart-container" id="reward-chart"></div>
|
526 |
+
</div>
|
527 |
+
|
528 |
+
<div class="panel">
|
529 |
+
<h3>Policy Loss</h3>
|
530 |
+
<div class="chart-container" id="policy-loss-chart"></div>
|
531 |
+
</div>
|
532 |
+
|
533 |
+
<div class="panel">
|
534 |
+
<h3>Value Loss</h3>
|
535 |
+
<div class="chart-container" id="value-loss-chart"></div>
|
536 |
+
</div>
|
537 |
+
</div>
|
538 |
+
</div>
|
539 |
+
</div>
|
540 |
+
|
541 |
+
<div class="popup-overlay" id="popup-overlay"></div>
|
542 |
+
<div class="popup" id="popup">
|
543 |
+
<h2 id="popup-title">Title</h2>
|
544 |
+
<div id="popup-content">Content</div>
|
545 |
+
<button onclick="closePopup()">Close</button>
|
546 |
+
</div>
|
547 |
+
|
548 |
+
<script>
|
549 |
+
// Environment configuration
|
550 |
+
const GRID_SIZE = 10;
|
551 |
+
let grid = [];
|
552 |
+
let agentPos = { x: 0, y: 0 };
|
553 |
+
let goalPos = { x: 9, y: 9 };
|
554 |
+
let obstacles = [];
|
555 |
+
let placingObstacles = false;
|
556 |
+
|
557 |
+
// Agent and PPO parameters
|
558 |
+
let policyNetwork = {};
|
559 |
+
let valueNetwork = {};
|
560 |
+
let clipRatio = 0.2;
|
561 |
+
let learningRate = 0.1; // Default learning rate (0-1 range)
|
562 |
+
let ppoEpochs = 4;
|
563 |
+
let gamma = 0.99; // Discount factor
|
564 |
+
let lambda = 0.95; // GAE parameter
|
565 |
+
|
566 |
+
// Training state
|
567 |
+
let isTraining = false;
|
568 |
+
let episode = 0;
|
569 |
+
let maxEpisodes = 100;
|
570 |
+
let episodeSteps = 0;
|
571 |
+
let maxStepsPerEpisode = 100; // Increased max steps to allow more exploration
|
572 |
+
let totalReward = 0;
|
573 |
+
let episodeRewards = [];
|
574 |
+
let policyLosses = [];
|
575 |
+
let valueLosses = [];
|
576 |
+
|
577 |
+
// Tracking for visualization
|
578 |
+
let trajectories = [];
|
579 |
+
let oldPolicy = {};
|
580 |
+
|
581 |
+
// Exploration parameters
|
582 |
+
let explorationRate = 0.2; // Probability of taking a random action (exploration)
|
583 |
+
|
584 |
+
// Initialize the environment
|
585 |
+
function initializeEnvironment() {
|
586 |
+
grid = [];
|
587 |
+
obstacles = [];
|
588 |
+
|
589 |
+
// Create the grid UI
|
590 |
+
const gridContainer = document.getElementById("grid");
|
591 |
+
gridContainer.innerHTML = "";
|
592 |
+
|
593 |
+
for (let y = 0; y < GRID_SIZE; y++) {
|
594 |
+
for (let x = 0; x < GRID_SIZE; x++) {
|
595 |
+
const cell = document.createElement("div");
|
596 |
+
cell.classList.add("cell");
|
597 |
+
cell.dataset.x = x;
|
598 |
+
cell.dataset.y = y;
|
599 |
+
cell.addEventListener("click", handleCellClick);
|
600 |
+
gridContainer.appendChild(cell);
|
601 |
+
}
|
602 |
+
}
|
603 |
+
|
604 |
+
// Place agent and goal
|
605 |
+
agentPos = { x: 0, y: 0 };
|
606 |
+
goalPos = { x: 9, y: 9 };
|
607 |
+
renderGrid();
|
608 |
+
|
609 |
+
// Initialize policy and value networks
|
610 |
+
initializeNetworks();
|
611 |
+
renderPolicy();
|
612 |
+
updateReward(0);
|
613 |
+
}
|
614 |
+
|
615 |
+
// Initialize policy and value networks
|
616 |
+
function initializeNetworks() {
|
617 |
+
policyNetwork = {};
|
618 |
+
valueNetwork = {};
|
619 |
+
|
620 |
+
// Initialize learning rate
|
621 |
+
learningRate = parseFloat(
|
622 |
+
document.getElementById("learning-rate").value
|
623 |
+
);
|
624 |
+
|
625 |
+
// Initialize policy and value for each state (cell)
|
626 |
+
for (let y = 0; y < GRID_SIZE; y++) {
|
627 |
+
for (let x = 0; x < GRID_SIZE; x++) {
|
628 |
+
const stateKey = `${x},${y}`;
|
629 |
+
|
630 |
+
// Initialize policy with random probabilities
|
631 |
+
policyNetwork[stateKey] = {
|
632 |
+
up: 0.25,
|
633 |
+
right: 0.25,
|
634 |
+
down: 0.25,
|
635 |
+
left: 0.25,
|
636 |
+
};
|
637 |
+
|
638 |
+
// Initialize value to zero
|
639 |
+
valueNetwork[stateKey] = 0;
|
640 |
+
}
|
641 |
+
}
|
642 |
+
}
|
643 |
+
|
644 |
+
function renderGrid() {
|
645 |
+
// Clear all cells
|
646 |
+
const cells = document.querySelectorAll(".cell");
|
647 |
+
cells.forEach((cell) => {
|
648 |
+
cell.innerHTML = "";
|
649 |
+
});
|
650 |
+
|
651 |
+
// Place agent
|
652 |
+
const agentCell = document.querySelector(
|
653 |
+
`.cell[data-x="${agentPos.x}"][data-y="${agentPos.y}"]`
|
654 |
+
);
|
655 |
+
const agentElement = document.createElement("div");
|
656 |
+
agentElement.classList.add("agent");
|
657 |
+
agentCell.appendChild(agentElement);
|
658 |
+
|
659 |
+
// Place goal
|
660 |
+
const goalCell = document.querySelector(
|
661 |
+
`.cell[data-x="${goalPos.x}"][data-y="${goalPos.y}"]`
|
662 |
+
);
|
663 |
+
const goalElement = document.createElement("div");
|
664 |
+
goalElement.classList.add("goal");
|
665 |
+
goalCell.appendChild(goalElement);
|
666 |
+
|
667 |
+
// Place obstacles
|
668 |
+
obstacles.forEach((obstacle) => {
|
669 |
+
const obstacleCell = document.querySelector(
|
670 |
+
`.cell[data-x="${obstacle.x}"][data-y="${obstacle.y}"]`
|
671 |
+
);
|
672 |
+
const obstacleElement = document.createElement("div");
|
673 |
+
obstacleElement.classList.add("obstacle");
|
674 |
+
obstacleCell.appendChild(obstacleElement);
|
675 |
+
});
|
676 |
+
}
|
677 |
+
|
678 |
+
function renderPolicy() {
|
679 |
+
const policyGrid = document.getElementById("policy-grid");
|
680 |
+
policyGrid.innerHTML = "";
|
681 |
+
|
682 |
+
for (let y = 0; y < GRID_SIZE; y++) {
|
683 |
+
for (let x = 0; x < GRID_SIZE; x++) {
|
684 |
+
const cell = document.createElement("div");
|
685 |
+
cell.classList.add("policy-cell");
|
686 |
+
|
687 |
+
const stateKey = `${x},${y}`;
|
688 |
+
const policy = policyNetwork[stateKey];
|
689 |
+
|
690 |
+
// Skip rendering policy for obstacles
|
691 |
+
if (isObstacle(x, y)) {
|
692 |
+
cell.style.backgroundColor = "#e74c3c";
|
693 |
+
policyGrid.appendChild(cell);
|
694 |
+
continue;
|
695 |
+
}
|
696 |
+
|
697 |
+
// If it's the goal, mark it green
|
698 |
+
if (x === goalPos.x && y === goalPos.y) {
|
699 |
+
cell.style.backgroundColor = "#2ecc71";
|
700 |
+
policyGrid.appendChild(cell);
|
701 |
+
continue;
|
702 |
+
}
|
703 |
+
|
704 |
+
// Create arrows for each action probability
|
705 |
+
for (const [action, prob] of Object.entries(policy)) {
|
706 |
+
if (prob > 0.2) {
|
707 |
+
// Only show significant probabilities
|
708 |
+
const arrow = document.createElement("div");
|
709 |
+
arrow.classList.add("arrow", `arrow-${action}`);
|
710 |
+
arrow.style.opacity = Math.min(1, prob * 2); // Scale opacity with probability
|
711 |
+
cell.appendChild(arrow);
|
712 |
+
}
|
713 |
+
}
|
714 |
+
|
715 |
+
// Add state value indication using background color intensity
|
716 |
+
const value = valueNetwork[stateKey];
|
717 |
+
const normalizedValue = (value + 10) / 20; // Normalize to [0,1] range assuming values between -10 and 10
|
718 |
+
const intensity = Math.max(
|
719 |
+
0,
|
720 |
+
Math.min(255, Math.floor(normalizedValue * 255))
|
721 |
+
);
|
722 |
+
cell.style.backgroundColor = `rgba(236, 240, 241, ${normalizedValue})`;
|
723 |
+
|
724 |
+
policyGrid.appendChild(cell);
|
725 |
+
}
|
726 |
+
}
|
727 |
+
}
|
728 |
+
|
729 |
+
function handleCellClick(event) {
|
730 |
+
const x = parseInt(event.currentTarget.dataset.x);
|
731 |
+
const y = parseInt(event.currentTarget.dataset.y);
|
732 |
+
|
733 |
+
if (placingObstacles) {
|
734 |
+
// Don't allow obstacles on agent or goal
|
735 |
+
if (
|
736 |
+
(x === agentPos.x && y === agentPos.y) ||
|
737 |
+
(x === goalPos.x && y === goalPos.y)
|
738 |
+
) {
|
739 |
+
return;
|
740 |
+
}
|
741 |
+
|
742 |
+
const obstacleIndex = obstacles.findIndex(
|
743 |
+
(o) => o.x === x && o.y === y
|
744 |
+
);
|
745 |
+
if (obstacleIndex === -1) {
|
746 |
+
obstacles.push({ x, y });
|
747 |
+
} else {
|
748 |
+
obstacles.splice(obstacleIndex, 1);
|
749 |
+
}
|
750 |
+
renderGrid();
|
751 |
+
renderPolicy();
|
752 |
+
}
|
753 |
+
}
|
754 |
+
|
755 |
+
function toggleObstaclePlacement() {
|
756 |
+
placingObstacles = !placingObstacles;
|
757 |
+
const btn = document.getElementById("place-obstacle-btn");
|
758 |
+
btn.textContent = placingObstacles ? "Done Placing" : "Place Obstacles";
|
759 |
+
btn.style.backgroundColor = placingObstacles ? "#e74c3c" : "#3498db";
|
760 |
+
}
|
761 |
+
|
762 |
+
function isObstacle(x, y) {
|
763 |
+
return obstacles.some((o) => o.x === x && o.y === y);
|
764 |
+
}
|
765 |
+
|
766 |
+
function resetEnvironment() {
|
767 |
+
initializeEnvironment();
|
768 |
+
episodeRewards = [];
|
769 |
+
policyLosses = [];
|
770 |
+
valueLosses = [];
|
771 |
+
episode = 0;
|
772 |
+
updateEpisodeCounter();
|
773 |
+
updateReward(0);
|
774 |
+
|
775 |
+
// Reset training state
|
776 |
+
isTraining = false;
|
777 |
+
document.getElementById("start-btn").textContent = "Start Training";
|
778 |
+
document.getElementById("step-btn").disabled = true;
|
779 |
+
|
780 |
+
// Clear charts
|
781 |
+
// In a real implementation, you would update the charts here
|
782 |
+
|
783 |
+
logMessage("Environment reset. Ready for training!");
|
784 |
+
}
|
785 |
+
|
786 |
+
function startTraining() {
|
787 |
+
if (isTraining) {
|
788 |
+
// Stop training
|
789 |
+
isTraining = false;
|
790 |
+
document.getElementById("start-btn").textContent = "Start Training";
|
791 |
+
document.getElementById("step-btn").disabled = true;
|
792 |
+
} else {
|
793 |
+
// Start training
|
794 |
+
isTraining = true;
|
795 |
+
document.getElementById("start-btn").textContent = "Stop Training";
|
796 |
+
document.getElementById("step-btn").disabled = false;
|
797 |
+
|
798 |
+
// If we're at the end of training, reset first
|
799 |
+
if (episode >= maxEpisodes) {
|
800 |
+
resetEnvironment();
|
801 |
+
}
|
802 |
+
|
803 |
+
runTrainingLoop();
|
804 |
+
}
|
805 |
+
}
|
806 |
+
|
807 |
+
function stepTraining() {
|
808 |
+
if (episode < maxEpisodes) {
|
809 |
+
runEpisode();
|
810 |
+
updateTrainingProgress();
|
811 |
+
} else {
|
812 |
+
logMessage("Training complete! Reset to train again.");
|
813 |
+
}
|
814 |
+
}
|
815 |
+
|
816 |
+
async function runTrainingLoop() {
|
817 |
+
while (isTraining && episode < maxEpisodes) {
|
818 |
+
await runEpisode();
|
819 |
+
updateTrainingProgress();
|
820 |
+
|
821 |
+
// Add a small delay to visualize the process
|
822 |
+
await new Promise((resolve) => setTimeout(resolve, 200));
|
823 |
+
}
|
824 |
+
|
825 |
+
if (episode >= maxEpisodes) {
|
826 |
+
logMessage("Training complete!");
|
827 |
+
isTraining = false;
|
828 |
+
document.getElementById("start-btn").textContent = "Start Training";
|
829 |
+
}
|
830 |
+
}
|
831 |
+
|
832 |
+
async function runEpisode() {
|
833 |
+
// Reset agent position and episodic variables
|
834 |
+
agentPos = { x: 0, y: 0 };
|
835 |
+
episodeSteps = 0;
|
836 |
+
totalReward = 0;
|
837 |
+
trajectories = [];
|
838 |
+
|
839 |
+
// Decay exploration rate over time (important for improving policy)
|
840 |
+
explorationRate = Math.max(0.05, 0.2 * Math.pow(0.99, episode));
|
841 |
+
|
842 |
+
renderGrid();
|
843 |
+
updateReward(totalReward);
|
844 |
+
|
845 |
+
// Save old policy for PPO ratio calculation
|
846 |
+
oldPolicy = JSON.parse(JSON.stringify(policyNetwork));
|
847 |
+
|
848 |
+
// Run episode until termination
|
849 |
+
let done = false;
|
850 |
+
while (!done && episodeSteps < maxStepsPerEpisode) {
|
851 |
+
done = await executeStep();
|
852 |
+
episodeSteps++;
|
853 |
+
|
854 |
+
// Small delay for visualization
|
855 |
+
await new Promise((resolve) =>
|
856 |
+
setTimeout(resolve, animationSpeeds[animationSpeed] / 2)
|
857 |
+
);
|
858 |
+
}
|
859 |
+
|
860 |
+
// Add episode reward to history
|
861 |
+
episodeRewards.push(totalReward);
|
862 |
+
|
863 |
+
// Run PPO update if we have enough steps
|
864 |
+
if (trajectories.length > 0) {
|
865 |
+
const [policyLoss, valueLoss] = updatePPO();
|
866 |
+
policyLosses.push(policyLoss);
|
867 |
+
valueLosses.push(valueLoss);
|
868 |
+
}
|
869 |
+
|
870 |
+
// Update UI
|
871 |
+
renderPolicy();
|
872 |
+
episode++;
|
873 |
+
updateEpisodeCounter();
|
874 |
+
|
875 |
+
logMessage(
|
876 |
+
`Episode ${episode}: Reward=${totalReward.toFixed(
|
877 |
+
2
|
878 |
+
)}, Steps=${episodeSteps}, Exploration=${explorationRate.toFixed(2)}`
|
879 |
+
);
|
880 |
+
|
881 |
+
return new Promise((resolve) => setTimeout(resolve, 10));
|
882 |
+
}
|
883 |
+
|
884 |
+
async function executeStep() {
|
885 |
+
const stateKey = `${agentPos.x},${agentPos.y}`;
|
886 |
+
const policy = policyNetwork[stateKey];
|
887 |
+
|
888 |
+
// Choose action based on policy
|
889 |
+
const action = sampleAction(policy);
|
890 |
+
|
891 |
+
// Store old position
|
892 |
+
const oldPos = { ...agentPos };
|
893 |
+
|
894 |
+
// Move agent
|
895 |
+
moveAgent(action);
|
896 |
+
|
897 |
+
// Calculate reward
|
898 |
+
const reward = calculateReward(oldPos);
|
899 |
+
totalReward += reward;
|
900 |
+
updateReward(totalReward);
|
901 |
+
|
902 |
+
// Check if episode is done
|
903 |
+
const done =
|
904 |
+
(agentPos.x === goalPos.x && agentPos.y === goalPos.y) ||
|
905 |
+
isObstacle(agentPos.x, agentPos.y);
|
906 |
+
|
907 |
+
// If agent hit obstacle, move it back for visualization
|
908 |
+
if (isObstacle(agentPos.x, agentPos.y)) {
|
909 |
+
agentPos = { ...oldPos };
|
910 |
+
}
|
911 |
+
|
912 |
+
// Render the grid
|
913 |
+
renderGrid();
|
914 |
+
|
915 |
+
// Store trajectory
|
916 |
+
const newStateKey = `${agentPos.x},${agentPos.y}`;
|
917 |
+
trajectories.push({
|
918 |
+
state: stateKey,
|
919 |
+
action,
|
920 |
+
reward,
|
921 |
+
nextState: newStateKey,
|
922 |
+
done,
|
923 |
+
});
|
924 |
+
|
925 |
+
return done;
|
926 |
+
}
|
927 |
+
|
928 |
+
function sampleAction(policy) {
|
929 |
+
// Use exploration rate to decide whether to take random action or follow policy
|
930 |
+
if (Math.random() < explorationRate) {
|
931 |
+
// Take random action with exploration probability
|
932 |
+
const actions = Object.keys(policy);
|
933 |
+
const randomIndex = Math.floor(Math.random() * actions.length);
|
934 |
+
return actions[randomIndex];
|
935 |
+
}
|
936 |
+
|
937 |
+
// Otherwise sample from policy distribution
|
938 |
+
const actions = Object.keys(policy);
|
939 |
+
const probs = actions.map((a) => policy[a]);
|
940 |
+
|
941 |
+
const rand = Math.random();
|
942 |
+
let cumProb = 0;
|
943 |
+
|
944 |
+
for (let i = 0; i < actions.length; i++) {
|
945 |
+
cumProb += probs[i];
|
946 |
+
if (rand < cumProb) {
|
947 |
+
return actions[i];
|
948 |
+
}
|
949 |
+
}
|
950 |
+
|
951 |
+
return actions[actions.length - 1];
|
952 |
+
}
|
953 |
+
|
954 |
+
function moveAgent(action) {
|
955 |
+
// Save previous position
|
956 |
+
const prevPos = { ...agentPos };
|
957 |
+
|
958 |
+
// Attempt to move agent
|
959 |
+
switch (action) {
|
960 |
+
case "up":
|
961 |
+
agentPos.y = Math.max(0, agentPos.y - 1);
|
962 |
+
break;
|
963 |
+
case "right":
|
964 |
+
agentPos.x = Math.min(GRID_SIZE - 1, agentPos.x + 1);
|
965 |
+
break;
|
966 |
+
case "down":
|
967 |
+
agentPos.y = Math.min(GRID_SIZE - 1, agentPos.y + 1);
|
968 |
+
break;
|
969 |
+
case "left":
|
970 |
+
agentPos.x = Math.max(0, agentPos.x - 1);
|
971 |
+
break;
|
972 |
+
}
|
973 |
+
|
974 |
+
// Check if new position is an obstacle
|
975 |
+
if (isObstacle(agentPos.x, agentPos.y)) {
|
976 |
+
// Revert to previous position if it hit an obstacle
|
977 |
+
agentPos.x = prevPos.x;
|
978 |
+
agentPos.y = prevPos.y;
|
979 |
+
return false; // Indicate movement was blocked
|
980 |
+
}
|
981 |
+
|
982 |
+
return true; // Movement successful
|
983 |
+
}
|
984 |
+
|
985 |
+
function calculateReward(oldPos, movementSuccessful) {
|
986 |
+
// Reward for reaching goal
|
987 |
+
if (agentPos.x === goalPos.x && agentPos.y === goalPos.y) {
|
988 |
+
return 10;
|
989 |
+
}
|
990 |
+
|
991 |
+
// Penalty for attempting to move into an obstacle (but not actually moving into it)
|
992 |
+
if (!movementSuccessful) {
|
993 |
+
return -1; // Reduced penalty to avoid too much negative learning
|
994 |
+
}
|
995 |
+
|
996 |
+
// Small penalty for each step to encourage efficiency
|
997 |
+
let stepPenalty = -0.1;
|
998 |
+
|
999 |
+
// Small reward for getting closer to goal (using Manhattan distance)
|
1000 |
+
const oldDistance =
|
1001 |
+
Math.abs(oldPos.x - goalPos.x) + Math.abs(oldPos.y - goalPos.y);
|
1002 |
+
const newDistance =
|
1003 |
+
Math.abs(agentPos.x - goalPos.x) + Math.abs(agentPos.y - goalPos.y);
|
1004 |
+
const proximityReward = oldDistance > newDistance ? 0.3 : -0.1; // Stronger reward for progress
|
1005 |
+
|
1006 |
+
return stepPenalty + proximityReward;
|
1007 |
+
}
|
1008 |
+
|
1009 |
+
function updatePPO() {
|
1010 |
+
// Get parameters from sliders
|
1011 |
+
clipRatio = parseFloat(document.getElementById("clip-ratio").value);
|
1012 |
+
learningRate = parseFloat(
|
1013 |
+
document.getElementById("learning-rate").value
|
1014 |
+
);
|
1015 |
+
ppoEpochs = parseInt(document.getElementById("epochs").value);
|
1016 |
+
|
1017 |
+
// Compute returns and advantages
|
1018 |
+
const returns = [];
|
1019 |
+
const advantages = [];
|
1020 |
+
|
1021 |
+
// Compute returns (discounted sum of future rewards)
|
1022 |
+
let discountedReturn = 0;
|
1023 |
+
for (let i = trajectories.length - 1; i >= 0; i--) {
|
1024 |
+
const transition = trajectories[i];
|
1025 |
+
discountedReturn =
|
1026 |
+
transition.reward +
|
1027 |
+
gamma * (transition.done ? 0 : discountedReturn);
|
1028 |
+
returns.unshift(discountedReturn);
|
1029 |
+
}
|
1030 |
+
|
1031 |
+
// Compute advantages using Generalized Advantage Estimation (GAE)
|
1032 |
+
let lastGaeAdvantage = 0;
|
1033 |
+
for (let i = trajectories.length - 1; i >= 0; i--) {
|
1034 |
+
const transition = trajectories[i];
|
1035 |
+
const stateKey = transition.state;
|
1036 |
+
const nextStateKey = transition.nextState;
|
1037 |
+
|
1038 |
+
const currentValue = valueNetwork[stateKey];
|
1039 |
+
const nextValue = transition.done ? 0 : valueNetwork[nextStateKey];
|
1040 |
+
|
1041 |
+
// TD error
|
1042 |
+
const delta = transition.reward + gamma * nextValue - currentValue;
|
1043 |
+
|
1044 |
+
// GAE
|
1045 |
+
lastGaeAdvantage = delta + gamma * lambda * lastGaeAdvantage;
|
1046 |
+
advantages.unshift(lastGaeAdvantage);
|
1047 |
+
}
|
1048 |
+
|
1049 |
+
// Normalize advantages for more stable learning
|
1050 |
+
const meanAdvantage =
|
1051 |
+
advantages.reduce((a, b) => a + b, 0) / advantages.length;
|
1052 |
+
const stdAdvantage =
|
1053 |
+
Math.sqrt(
|
1054 |
+
advantages.reduce((a, b) => a + Math.pow(b - meanAdvantage, 2), 0) /
|
1055 |
+
advantages.length
|
1056 |
+
) || 1; // Avoid division by zero
|
1057 |
+
|
1058 |
+
for (let i = 0; i < advantages.length; i++) {
|
1059 |
+
advantages[i] =
|
1060 |
+
(advantages[i] - meanAdvantage) / (stdAdvantage + 1e-8);
|
1061 |
+
}
|
1062 |
+
|
1063 |
+
// Store losses for metrics
|
1064 |
+
let totalPolicyLoss = 0;
|
1065 |
+
let totalValueLoss = 0;
|
1066 |
+
|
1067 |
+
// Backup old policy for PPO ratio calculation
|
1068 |
+
const oldPolicyBackup = JSON.parse(JSON.stringify(policyNetwork));
|
1069 |
+
|
1070 |
+
// Multiple epochs of optimization on the same data (key PPO feature)
|
1071 |
+
for (let epoch = 0; epoch < ppoEpochs; epoch++) {
|
1072 |
+
// Update policy and value networks for each step in the trajectory
|
1073 |
+
for (let i = 0; i < trajectories.length; i++) {
|
1074 |
+
const transition = trajectories[i];
|
1075 |
+
const stateKey = transition.state;
|
1076 |
+
const action = transition.action;
|
1077 |
+
|
1078 |
+
// Get old action probability
|
1079 |
+
const oldActionProb = oldPolicy[stateKey][action];
|
1080 |
+
|
1081 |
+
// Get current action probability
|
1082 |
+
const currentActionProb = policyNetwork[stateKey][action];
|
1083 |
+
|
1084 |
+
// Compute probability ratio (crucial for PPO)
|
1085 |
+
const ratio = currentActionProb / Math.max(oldActionProb, 1e-8);
|
1086 |
+
|
1087 |
+
// Get advantage for this action
|
1088 |
+
const advantage = advantages[i];
|
1089 |
+
|
1090 |
+
// Compute unclipped and clipped surrogate objectives
|
1091 |
+
const unclippedObjective = ratio * advantage;
|
1092 |
+
const clippedRatio = Math.max(
|
1093 |
+
Math.min(ratio, 1 + clipRatio),
|
1094 |
+
1 - clipRatio
|
1095 |
+
);
|
1096 |
+
const clippedObjective = clippedRatio * advantage;
|
1097 |
+
|
1098 |
+
// PPO's clipped surrogate objective (core of PPO)
|
1099 |
+
const surrogateObjective = Math.min(
|
1100 |
+
unclippedObjective,
|
1101 |
+
clippedObjective
|
1102 |
+
);
|
1103 |
+
|
1104 |
+
// Compute policy gradient
|
1105 |
+
// Note: In PPO, we maximize the objective, so negative for gradient ascent
|
1106 |
+
const policyLoss = -surrogateObjective;
|
1107 |
+
totalPolicyLoss += policyLoss;
|
1108 |
+
|
1109 |
+
// Value loss (using returns as targets)
|
1110 |
+
const valueTarget = returns[i];
|
1111 |
+
const valuePrediction = valueNetwork[stateKey];
|
1112 |
+
const valueLoss = 0.5 * Math.pow(valueTarget - valuePrediction, 2);
|
1113 |
+
totalValueLoss += valueLoss;
|
1114 |
+
|
1115 |
+
// Update value network with gradient descent
|
1116 |
+
valueNetwork[stateKey] +=
|
1117 |
+
learningRate * (valueTarget - valuePrediction);
|
1118 |
+
|
1119 |
+
// Compute policy update based on whether we're using clipped or unclipped objective
|
1120 |
+
const useClippedObjective = unclippedObjective > clippedObjective;
|
1121 |
+
const policyGradient =
|
1122 |
+
learningRate * advantage * (useClippedObjective ? 0 : 1);
|
1123 |
+
|
1124 |
+
// Apply policy gradient update
|
1125 |
+
// Increase probability of the taken action if it was good (positive advantage)
|
1126 |
+
// Decrease probability if it was bad (negative advantage)
|
1127 |
+
let newProb = policyNetwork[stateKey][action] + policyGradient;
|
1128 |
+
|
1129 |
+
// Ensure probability stays positive (important for ratio calculation)
|
1130 |
+
newProb = Math.max(newProb, 0.01);
|
1131 |
+
policyNetwork[stateKey][action] = newProb;
|
1132 |
+
|
1133 |
+
// Normalize probabilities to ensure they sum to 1
|
1134 |
+
const sumProb = Object.values(policyNetwork[stateKey]).reduce(
|
1135 |
+
(a, b) => a + b,
|
1136 |
+
0
|
1137 |
+
);
|
1138 |
+
for (const a in policyNetwork[stateKey]) {
|
1139 |
+
policyNetwork[stateKey][a] /= sumProb;
|
1140 |
+
}
|
1141 |
+
|
1142 |
+
// Add some exploration (entropy bonus)
|
1143 |
+
// This is crucial for avoiding local optima
|
1144 |
+
if (i % 5 === 0) {
|
1145 |
+
// Apply periodically to maintain some exploration
|
1146 |
+
for (const a in policyNetwork[stateKey]) {
|
1147 |
+
// Slightly nudge probabilities toward uniform
|
1148 |
+
policyNetwork[stateKey][a] =
|
1149 |
+
0.95 * policyNetwork[stateKey][a] + 0.05 * 0.25;
|
1150 |
+
}
|
1151 |
+
// Re-normalize
|
1152 |
+
const sumProb = Object.values(policyNetwork[stateKey]).reduce(
|
1153 |
+
(a, b) => a + b,
|
1154 |
+
0
|
1155 |
+
);
|
1156 |
+
for (const a in policyNetwork[stateKey]) {
|
1157 |
+
policyNetwork[stateKey][a] /= sumProb;
|
1158 |
+
}
|
1159 |
+
}
|
1160 |
+
}
|
1161 |
+
}
|
1162 |
+
|
1163 |
+
// Calculate average losses
|
1164 |
+
const avgPolicyLoss =
|
1165 |
+
totalPolicyLoss / (trajectories.length * ppoEpochs);
|
1166 |
+
const avgValueLoss = totalValueLoss / (trajectories.length * ppoEpochs);
|
1167 |
+
|
1168 |
+
// Log progress periodically
|
1169 |
+
if (episode % 5 === 0) {
|
1170 |
+
logMessage(
|
1171 |
+
`Episode ${episode}: Average Policy Loss = ${avgPolicyLoss.toFixed(
|
1172 |
+
4
|
1173 |
+
)}, Value Loss = ${avgValueLoss.toFixed(4)}`
|
1174 |
+
);
|
1175 |
+
}
|
1176 |
+
|
1177 |
+
return [avgPolicyLoss, avgValueLoss];
|
1178 |
+
}
|
1179 |
+
|
1180 |
+
function updateReward(reward) {
|
1181 |
+
document.getElementById("reward-value").textContent = reward.toFixed(2);
|
1182 |
+
}
|
1183 |
+
|
1184 |
+
function updateEpisodeCounter() {
|
1185 |
+
document.getElementById(
|
1186 |
+
"episode-counter"
|
1187 |
+
).textContent = `Episodes: ${episode} / ${maxEpisodes}`;
|
1188 |
+
document.getElementById("training-progress").style.width = `${
|
1189 |
+
(episode / maxEpisodes) * 100
|
1190 |
+
}%`;
|
1191 |
+
}
|
1192 |
+
|
1193 |
+
function updateTrainingProgress() {
|
1194 |
+
// Update charts with the latest data
|
1195 |
+
// In a real implementation, you would update charts here
|
1196 |
+
|
1197 |
+
// Show progress
|
1198 |
+
updateEpisodeCounter();
|
1199 |
+
}
|
1200 |
+
|
1201 |
+
function updateSliderValue(id) {
|
1202 |
+
const slider = document.getElementById(id);
|
1203 |
+
const valueDisplay = document.getElementById(`${id}-value`);
|
1204 |
+
valueDisplay.textContent = slider.value;
|
1205 |
+
|
1206 |
+
// Update corresponding variables
|
1207 |
+
if (id === "clip-ratio") clipRatio = parseFloat(slider.value);
|
1208 |
+
if (id === "learning-rate") learningRate = parseFloat(slider.value);
|
1209 |
+
if (id === "epochs") ppoEpochs = parseInt(slider.value);
|
1210 |
+
}
|
1211 |
+
|
1212 |
+
function logMessage(message) {
|
1213 |
+
const logContainer = document.getElementById("log-container");
|
1214 |
+
const logEntry = document.createElement("div");
|
1215 |
+
logEntry.classList.add("log-entry");
|
1216 |
+
logEntry.textContent = message;
|
1217 |
+
logContainer.appendChild(logEntry);
|
1218 |
+
logContainer.scrollTop = logContainer.scrollHeight;
|
1219 |
+
}
|
1220 |
+
|
1221 |
+
function openTab(tabId) {
|
1222 |
+
// Hide all tab contents
|
1223 |
+
const tabContents = document.getElementsByClassName("tab-content");
|
1224 |
+
for (let i = 0; i < tabContents.length; i++) {
|
1225 |
+
tabContents[i].classList.remove("active");
|
1226 |
+
}
|
1227 |
+
|
1228 |
+
// Remove active class from tab buttons
|
1229 |
+
const tabButtons = document.getElementsByClassName("tab-button");
|
1230 |
+
for (let i = 0; i < tabButtons.length; i++) {
|
1231 |
+
tabButtons[i].classList.remove("active");
|
1232 |
+
}
|
1233 |
+
|
1234 |
+
// Show selected tab content and mark button as active
|
1235 |
+
document.getElementById(tabId).classList.add("active");
|
1236 |
+
const activeButton = document.querySelector(
|
1237 |
+
`.tab-button[onclick="openTab('${tabId}')"]`
|
1238 |
+
);
|
1239 |
+
activeButton.classList.add("active");
|
1240 |
+
}
|
1241 |
+
|
1242 |
+
function showPopup(title, content) {
|
1243 |
+
document.getElementById("popup-title").textContent = title;
|
1244 |
+
document.getElementById("popup-content").innerHTML = content;
|
1245 |
+
document.getElementById("popup-overlay").style.display = "block";
|
1246 |
+
document.getElementById("popup").style.display = "block";
|
1247 |
+
}
|
1248 |
+
|
1249 |
+
function closePopup() {
|
1250 |
+
document.getElementById("popup-overlay").style.display = "none";
|
1251 |
+
document.getElementById("popup").style.display = "none";
|
1252 |
+
}
|
1253 |
+
|
1254 |
+
// Initialize the environment when the page loads
|
1255 |
+
window.onload = function () {
|
1256 |
+
initializeEnvironment();
|
1257 |
+
logMessage('Environment initialized. Click "Start Training" to begin!');
|
1258 |
+
|
1259 |
+
// Show concept popup with a delay
|
1260 |
+
setTimeout(() => {
|
1261 |
+
showPopup(
|
1262 |
+
"Welcome to PPO Simulation",
|
1263 |
+
`
|
1264 |
+
<p>This simulation demonstrates Proximal Policy Optimization (PPO), a reinforcement learning algorithm.</p>
|
1265 |
+
<p>In this grid world:</p>
|
1266 |
+
<ul>
|
1267 |
+
<li>The agent (blue circle) must learn to navigate to the goal (green square)</li>
|
1268 |
+
<li>You can place obstacles (red squares) by clicking the "Place Obstacles" button</li>
|
1269 |
+
<li>The agent receives rewards for approaching the goal and penalties for hitting obstacles</li>
|
1270 |
+
<li>PPO helps the agent learn efficiently by preventing large policy updates</li>
|
1271 |
+
</ul>
|
1272 |
+
<p>Try experimenting with different parameters to see how they affect learning!</p>
|
1273 |
+
`
|
1274 |
+
);
|
1275 |
+
}, 1000);
|
1276 |
+
};
|
1277 |
+
// Animation speed control
|
1278 |
+
let animationSpeed = "normal";
|
1279 |
+
const animationSpeeds = {
|
1280 |
+
slow: 300,
|
1281 |
+
normal: 100,
|
1282 |
+
fast: 20,
|
1283 |
+
};
|
1284 |
+
|
1285 |
+
function toggleAnimationSpeed() {
|
1286 |
+
const speedBtn = document.getElementById("animation-speed-btn");
|
1287 |
+
|
1288 |
+
if (animationSpeed === "slow") {
|
1289 |
+
animationSpeed = "normal";
|
1290 |
+
speedBtn.textContent = "Animation Speed: Normal";
|
1291 |
+
} else if (animationSpeed === "normal") {
|
1292 |
+
animationSpeed = "fast";
|
1293 |
+
speedBtn.textContent = "Animation Speed: Fast";
|
1294 |
+
} else {
|
1295 |
+
animationSpeed = "slow";
|
1296 |
+
speedBtn.textContent = "Animation Speed: Slow";
|
1297 |
+
}
|
1298 |
+
}
|
1299 |
+
|
1300 |
+
// Update animation speed in relevant functions
|
1301 |
+
async function runTrainingLoop() {
|
1302 |
+
while (isTraining && episode < maxEpisodes) {
|
1303 |
+
await runEpisode();
|
1304 |
+
updateTrainingProgress();
|
1305 |
+
|
1306 |
+
// Use dynamic animation speed
|
1307 |
+
await new Promise((resolve) =>
|
1308 |
+
setTimeout(resolve, animationSpeeds[animationSpeed])
|
1309 |
+
);
|
1310 |
+
}
|
1311 |
+
|
1312 |
+
if (episode >= maxEpisodes) {
|
1313 |
+
logMessage("Training complete!");
|
1314 |
+
isTraining = false;
|
1315 |
+
document.getElementById("start-btn").textContent = "Start Training";
|
1316 |
+
}
|
1317 |
+
}
|
1318 |
+
|
1319 |
+
async function executeStep() {
|
1320 |
+
const stateKey = `${agentPos.x},${agentPos.y}`;
|
1321 |
+
const policy = policyNetwork[stateKey];
|
1322 |
+
|
1323 |
+
// Choose action based on policy
|
1324 |
+
const action = sampleAction(policy);
|
1325 |
+
|
1326 |
+
// Store old position
|
1327 |
+
const oldPos = { ...agentPos };
|
1328 |
+
|
1329 |
+
// Move agent
|
1330 |
+
const movementSuccessful = moveAgent(action);
|
1331 |
+
|
1332 |
+
// Calculate reward
|
1333 |
+
const reward = calculateReward(oldPos, movementSuccessful);
|
1334 |
+
totalReward += reward;
|
1335 |
+
updateReward(totalReward);
|
1336 |
+
|
1337 |
+
// Check if episode is done
|
1338 |
+
const done = agentPos.x === goalPos.x && agentPos.y === goalPos.y;
|
1339 |
+
|
1340 |
+
// Render the grid
|
1341 |
+
renderGrid();
|
1342 |
+
|
1343 |
+
// Store trajectory
|
1344 |
+
const newStateKey = `${agentPos.x},${agentPos.y}`;
|
1345 |
+
trajectories.push({
|
1346 |
+
state: stateKey,
|
1347 |
+
action,
|
1348 |
+
reward,
|
1349 |
+
nextState: newStateKey,
|
1350 |
+
done,
|
1351 |
+
});
|
1352 |
+
|
1353 |
+
// Use dynamic animation speed
|
1354 |
+
await new Promise((resolve) =>
|
1355 |
+
setTimeout(resolve, animationSpeeds[animationSpeed] / 2)
|
1356 |
+
);
|
1357 |
+
|
1358 |
+
return done;
|
1359 |
+
}
|
1360 |
+
</script>
|
1361 |
+
|
1362 |
+
<footer
|
1363 |
+
style="
|
1364 |
+
text-align: center;
|
1365 |
+
margin-top: 30px;
|
1366 |
+
padding: 15px;
|
1367 |
+
background-color: #f8f9fa;
|
1368 |
+
border-top: 1px solid #ddd;
|
1369 |
+
"
|
1370 |
+
>
|
1371 |
+
© 2025 Pejman Ebrahimi - All Rights Reserved
|
1372 |
+
</footer>
|
1373 |
+
</body>
|
1374 |
</html>
|