ariG23498 HF staff commited on
Commit
0b5267a
Β·
verified Β·
1 Parent(s): a1da98d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -15
app.py CHANGED
@@ -1,39 +1,30 @@
1
  import gradio as gr
2
  from transformers import pipeline
3
 
4
- # Initialize the pipeline
5
  pipe = pipeline(
6
  "image-classification",
7
  model="ariG23498/vit_base_patch16_224.augreg2_in21k_ft_in1k.ft_food101"
8
  )
9
 
10
- # Function for classification
11
  def classify(image):
12
- return pipe(image)[0]["label"]
 
13
 
14
- # Gradio Interface with a detailed description
15
  demo = gr.Interface(
16
  fn=classify,
17
  inputs=gr.Image(type="pil", label="Upload an Image"),
18
- outputs=gr.Textbox(label="Predicted Label"),
19
  examples=[["./sushi.png", "sushi"]],
20
  title="Food Classification with ViT πŸ₯—πŸ£",
21
  description=(
22
- "### Explore Food Classification with Vision Transformers (ViT) πŸ”\n\n"
23
  "This application demonstrates the power of Vision Transformers (ViT) for food classification tasks, "
24
  "leveraging the pre-trained model `vit_base_patch16_224.augreg2_in21k_ft_in1k.ft_food101` fine-tuned on the Food-101 dataset. "
25
  "With just a few lines of code, you can integrate state-of-the-art image classification models using the Hugging Face `pipeline` API.\n\n"
26
- "#### How to Use:\n"
27
  "1. Upload an image of food (e.g., sushi, pizza, or burgers).\n"
28
- "2. The model will classify the image and provide the predicted label.\n"
29
  "3. Try the provided example for a quick start or test your own food images!\n\n"
30
- "#### About the Model:\n"
31
- "- **Model Name**: `vit_base_patch16_224.augreg2_in21k_ft_in1k.ft_food101`\n"
32
- "- **Dataset**: [Food-101](https://www.kaggle.com/dansbecker/food-101)\n"
33
- "- **Architecture**: Vision Transformers (ViT), which process images by splitting them into patches and leveraging self-attention for feature extraction.\n\n"
34
- "#### Learn More:\n"
35
- "Discover more about Vision Transformers in the [Hugging Face blog](https://huggingface.co/blog). "
36
- "Explore the Food-101 dataset [here](https://www.kaggle.com/dansbecker/food-101)."
37
  )
38
  )
39
 
 
1
  import gradio as gr
2
  from transformers import pipeline
3
 
 
4
  pipe = pipeline(
5
  "image-classification",
6
  model="ariG23498/vit_base_patch16_224.augreg2_in21k_ft_in1k.ft_food101"
7
  )
8
 
 
9
  def classify(image):
10
+ results = pipe(image)
11
+ return {result["label"]: round(result["score"], 2) for result in results}
12
 
 
13
  demo = gr.Interface(
14
  fn=classify,
15
  inputs=gr.Image(type="pil", label="Upload an Image"),
16
+ outputs=gr.Label(num_top_classes=3, label="Top Predictions"),
17
  examples=[["./sushi.png", "sushi"]],
18
  title="Food Classification with ViT πŸ₯—πŸ£",
19
  description=(
20
+ "# Explore Food Classification with Vision Transformers (ViT) πŸ”\n\n"
21
  "This application demonstrates the power of Vision Transformers (ViT) for food classification tasks, "
22
  "leveraging the pre-trained model `vit_base_patch16_224.augreg2_in21k_ft_in1k.ft_food101` fine-tuned on the Food-101 dataset. "
23
  "With just a few lines of code, you can integrate state-of-the-art image classification models using the Hugging Face `pipeline` API.\n\n"
24
+ "## How to Use:\n"
25
  "1. Upload an image of food (e.g., sushi, pizza, or burgers).\n"
26
+ "2. The model will classify the image and provide the predicted labels along with confidence scores.\n"
27
  "3. Try the provided example for a quick start or test your own food images!\n\n"
 
 
 
 
 
 
 
28
  )
29
  )
30