Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +159 -0
- requirements.txt +3 -0
app.py
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import statsmodels.api as sm
|
| 3 |
+
import streamlit as st
|
| 4 |
+
from datetime import datetime
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
# ---- App title ----
|
| 8 |
+
st.title("Mini Stata - Simplified Version")
|
| 9 |
+
|
| 10 |
+
# ---- Student login ----
|
| 11 |
+
st.subheader("Student Login")
|
| 12 |
+
student_name = st.text_input("Enter your name:")
|
| 13 |
+
student_id = st.text_input("Enter your student ID:")
|
| 14 |
+
|
| 15 |
+
if student_name and student_id:
|
| 16 |
+
logfile = f"log_{student_id}.csv"
|
| 17 |
+
|
| 18 |
+
# Ensure log file exists
|
| 19 |
+
if not os.path.exists(logfile):
|
| 20 |
+
pd.DataFrame(columns=["timestamp", "student_name", "student_id", "command", "result"]).to_csv(logfile, index=False)
|
| 21 |
+
|
| 22 |
+
st.success(f"Logged in as {student_name} (ID: {student_id})")
|
| 23 |
+
|
| 24 |
+
# ---- File upload ----
|
| 25 |
+
uploaded_file = st.file_uploader("Upload CSV file", type=["csv"])
|
| 26 |
+
if uploaded_file is not None:
|
| 27 |
+
df = pd.read_csv(uploaded_file)
|
| 28 |
+
st.success("File uploaded successfully!")
|
| 29 |
+
else:
|
| 30 |
+
st.info("No file uploaded. Using default sample dataset.")
|
| 31 |
+
df = pd.DataFrame({
|
| 32 |
+
"mpg": [21, 22, 18, 30],
|
| 33 |
+
"weight": [2500, 2800, 3200, 2100],
|
| 34 |
+
"cyl": [4, 4, 6, 4],
|
| 35 |
+
"horsepower": [90, 95, 110, 80]
|
| 36 |
+
})
|
| 37 |
+
|
| 38 |
+
# ---- summarize ----
|
| 39 |
+
def summarize(var=None):
|
| 40 |
+
try:
|
| 41 |
+
if var is None:
|
| 42 |
+
return df.describe().T
|
| 43 |
+
elif var in df.columns:
|
| 44 |
+
return df[var].describe().to_frame().T
|
| 45 |
+
else:
|
| 46 |
+
return f"Variable '{var}' not found."
|
| 47 |
+
except Exception as e:
|
| 48 |
+
return f"Error in summarize: {e}"
|
| 49 |
+
|
| 50 |
+
# ---- browse ----
|
| 51 |
+
def browse(n=None):
|
| 52 |
+
try:
|
| 53 |
+
if n is None:
|
| 54 |
+
return df
|
| 55 |
+
return df.head(n)
|
| 56 |
+
except Exception as e:
|
| 57 |
+
return f"Error in browse: {e}"
|
| 58 |
+
|
| 59 |
+
# ---- tab ----
|
| 60 |
+
def tab(var):
|
| 61 |
+
try:
|
| 62 |
+
if var not in df.columns:
|
| 63 |
+
return f"Variable '{var}' not found."
|
| 64 |
+
return df[var].value_counts().to_frame("Frequency")
|
| 65 |
+
except Exception as e:
|
| 66 |
+
return f"Error in tab: {e}"
|
| 67 |
+
|
| 68 |
+
# ---- reg (simplified like Stata) ----
|
| 69 |
+
def reg(dep_var, indep_vars):
|
| 70 |
+
try:
|
| 71 |
+
if dep_var not in df.columns:
|
| 72 |
+
return f"Dependent variable '{dep_var}' not found."
|
| 73 |
+
for v in indep_vars:
|
| 74 |
+
if v not in df.columns:
|
| 75 |
+
return f"Independent variable '{v}' not found."
|
| 76 |
+
|
| 77 |
+
X = sm.add_constant(df[indep_vars])
|
| 78 |
+
y = df[dep_var]
|
| 79 |
+
model = sm.OLS(y, X).fit()
|
| 80 |
+
|
| 81 |
+
# Create clean results table
|
| 82 |
+
results_table = pd.DataFrame({
|
| 83 |
+
'Variable': model.params.index,
|
| 84 |
+
'Coef.': model.params.values.round(4),
|
| 85 |
+
'Std. Err.': model.bse.values.round(4),
|
| 86 |
+
't': model.tvalues.values.round(3),
|
| 87 |
+
'P>|t|': model.pvalues.values.round(3)
|
| 88 |
+
})
|
| 89 |
+
|
| 90 |
+
# Display concise summary
|
| 91 |
+
summary_stats = f"Number of obs = {int(model.nobs)} R-squared = {model.rsquared:.3f}"
|
| 92 |
+
return results_table, summary_stats
|
| 93 |
+
except Exception as e:
|
| 94 |
+
return f"Error in regression: {e}"
|
| 95 |
+
|
| 96 |
+
# ---- Command parser ----
|
| 97 |
+
def run_command(cmd):
|
| 98 |
+
parts = cmd.strip().split()
|
| 99 |
+
if not parts:
|
| 100 |
+
return "No command entered."
|
| 101 |
+
command = parts[0].lower()
|
| 102 |
+
args = parts[1:]
|
| 103 |
+
|
| 104 |
+
if command == "summarize":
|
| 105 |
+
return summarize(args[0]) if args else summarize()
|
| 106 |
+
elif command == "browse":
|
| 107 |
+
return browse()
|
| 108 |
+
elif command == "tab":
|
| 109 |
+
if not args:
|
| 110 |
+
return "Usage: tab varname"
|
| 111 |
+
return tab(args[0])
|
| 112 |
+
elif command == "reg":
|
| 113 |
+
if len(args) < 2:
|
| 114 |
+
return "Usage: reg depvar indepvar1 indepvar2 ..."
|
| 115 |
+
return reg(args[0], args[1:])
|
| 116 |
+
else:
|
| 117 |
+
return f"Unknown command: '{command}'. Available commands: summarize, browse, tab, reg."
|
| 118 |
+
|
| 119 |
+
# ---- Interface ----
|
| 120 |
+
st.markdown("""
|
| 121 |
+
### Available commands
|
| 122 |
+
- `summarize`
|
| 123 |
+
- `summarize mpg`
|
| 124 |
+
- `browse`
|
| 125 |
+
- `tab cyl`
|
| 126 |
+
- `reg mpg weight horsepower`
|
| 127 |
+
""")
|
| 128 |
+
|
| 129 |
+
cmd = st.text_input("Enter command:")
|
| 130 |
+
|
| 131 |
+
if st.button("Run"):
|
| 132 |
+
result = run_command(cmd)
|
| 133 |
+
|
| 134 |
+
# Log
|
| 135 |
+
log_entry = {
|
| 136 |
+
"timestamp": datetime.now().isoformat(),
|
| 137 |
+
"student_name": student_name,
|
| 138 |
+
"student_id": student_id,
|
| 139 |
+
"command": cmd,
|
| 140 |
+
"result": str(result)[:500]
|
| 141 |
+
}
|
| 142 |
+
pd.DataFrame([log_entry]).to_csv(logfile, mode="a", header=False, index=False)
|
| 143 |
+
|
| 144 |
+
# Display result
|
| 145 |
+
if isinstance(result, tuple): # regression output
|
| 146 |
+
table, stats = result
|
| 147 |
+
st.text(stats)
|
| 148 |
+
st.table(table)
|
| 149 |
+
elif isinstance(result, pd.DataFrame):
|
| 150 |
+
st.dataframe(result)
|
| 151 |
+
else:
|
| 152 |
+
st.text(result)
|
| 153 |
+
|
| 154 |
+
if st.button("Download My Log"):
|
| 155 |
+
with open(logfile, "r") as f:
|
| 156 |
+
st.download_button("Click to download", f, file_name=logfile, mime="text/csv")
|
| 157 |
+
|
| 158 |
+
else:
|
| 159 |
+
st.warning("Please enter name and student ID to start.")
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
pandas
|
| 3 |
+
statsmodels
|