arittrabag commited on
Commit
9c1eddf
·
verified ·
1 Parent(s): de2de02

Add interface.py

Browse files
Files changed (1) hide show
  1. interface.py +58 -0
interface.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import SegformerForImageClassification
3
+ from torchvision import transforms
4
+ from PIL import Image
5
+ import gradio as gr
6
+
7
+ # Load Alzheimer's model
8
+ alzheimers_model = SegformerForImageClassification.from_pretrained('nvidia/mit-b1')
9
+ alzheimers_model.classifier = torch.nn.Linear(alzheimers_model.classifier.in_features, 4) # 4 classes
10
+ alzheimers_model.load_state_dict(torch.load('alzheimers_model.pth', map_location=torch.device('cpu')))
11
+ alzheimers_model.eval()
12
+
13
+ # Load Brain Tumor model
14
+ brain_tumor_model = SegformerForImageClassification.from_pretrained('nvidia/mit-b1')
15
+ brain_tumor_model.classifier = torch.nn.Linear(brain_tumor_model.classifier.in_features, 4) # 4 classes
16
+ brain_tumor_model.load_state_dict(torch.load('brain_tumor_model.pth', map_location=torch.device('cpu')))
17
+ brain_tumor_model.eval()
18
+
19
+ # Define transformations
20
+ transform = transforms.Compose([
21
+ transforms.Resize((224, 224)),
22
+ transforms.ToTensor(),
23
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
24
+ ])
25
+
26
+ # Prediction function for Alzheimer's
27
+ def predict_alzheimers(image):
28
+ image = transform(image).unsqueeze(0)
29
+ with torch.no_grad():
30
+ outputs = alzheimers_model(image).logits
31
+ _, predicted = torch.max(outputs, 1)
32
+ classes = ['Mild Dementia', 'Moderate Dementia', 'Non Demented', 'Very mild Dementia']
33
+ return classes[predicted.item()]
34
+
35
+ # Prediction function for Brain Tumor
36
+ def predict_brain_tumor(image):
37
+ image = transform(image).unsqueeze(0)
38
+ with torch.no_grad():
39
+ outputs = brain_tumor_model(image).logits
40
+ _, predicted = torch.max(outputs, 1)
41
+ classes = ['glioma', 'meningioma', 'notumor', 'pituitary']
42
+ return classes[predicted.item()]
43
+
44
+ def predict(image, model_type):
45
+ if model_type == "Alzheimer's":
46
+ return predict_alzheimers(image)
47
+ elif model_type == "Brain Tumor":
48
+ return predict_brain_tumor(image)
49
+
50
+ interface = gr.Interface(
51
+ fn=predict,
52
+ inputs=[gr.Image(type="pil"), gr.Dropdown(["Alzheimer's", "Brain Tumor"])],
53
+ outputs=gr.Textbox(),
54
+ title="MRI Scan Classification",
55
+ description="Upload an MRI scan and select the type of classification."
56
+ )
57
+
58
+ interface.launch()