import torch from transformers import SegformerForImageClassification from torchvision import transforms from PIL import Image import gradio as gr # Load Alzheimer's model alzheimers_model = SegformerForImageClassification.from_pretrained('nvidia/mit-b1') alzheimers_model.classifier = torch.nn.Linear(alzheimers_model.classifier.in_features, 4) # 4 classes alzheimers_model.load_state_dict(torch.load('alzheimers_model.pth', map_location=torch.device('cpu'))) alzheimers_model.eval() # Load Brain Tumor model brain_tumor_model = SegformerForImageClassification.from_pretrained('nvidia/mit-b1') brain_tumor_model.classifier = torch.nn.Linear(brain_tumor_model.classifier.in_features, 4) # 4 classes brain_tumor_model.load_state_dict(torch.load('brain_tumor_model.pth', map_location=torch.device('cpu'))) brain_tumor_model.eval() # Define transformations transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) # Prediction function for Alzheimer's def predict_alzheimers(image): image = transform(image).unsqueeze(0) with torch.no_grad(): outputs = alzheimers_model(image).logits _, predicted = torch.max(outputs, 1) classes = ['Mild Dementia', 'Moderate Dementia', 'Non Demented', 'Very mild Dementia'] return classes[predicted.item()] # Prediction function for Brain Tumor def predict_brain_tumor(image): image = transform(image).unsqueeze(0) with torch.no_grad(): outputs = brain_tumor_model(image).logits _, predicted = torch.max(outputs, 1) classes = ['glioma', 'meningioma', 'notumor', 'pituitary'] return classes[predicted.item()] def predict(image, model_type): if model_type == "Alzheimer's": return predict_alzheimers(image) elif model_type == "Brain Tumor": return predict_brain_tumor(image) interface = gr.Interface( fn=predict, inputs=[gr.Image(type="pil"), gr.Dropdown(["Alzheimer's", "Brain Tumor"])], outputs=gr.Textbox(), title="MRI Scan Classification", description="Upload an MRI scan and select the type of classification." ) interface.launch()