Delete fonts/app.py
Browse files- fonts/app.py +0 -575
fonts/app.py
DELETED
|
@@ -1,575 +0,0 @@
|
|
| 1 |
-
import spaces
|
| 2 |
-
import os
|
| 3 |
-
import gradio as gr
|
| 4 |
-
import easyocr
|
| 5 |
-
import numpy as np
|
| 6 |
-
import cv2
|
| 7 |
-
import base64
|
| 8 |
-
import torch
|
| 9 |
-
from shapely import Polygon
|
| 10 |
-
from ultralytics import YOLO
|
| 11 |
-
|
| 12 |
-
from io import BytesIO
|
| 13 |
-
from openai import OpenAI
|
| 14 |
-
from PIL import Image, ImageDraw, ImageFont
|
| 15 |
-
|
| 16 |
-
from diffusers.utils import load_image, check_min_version
|
| 17 |
-
from controlnet_flux import FluxControlNetModel
|
| 18 |
-
from transformer_flux import FluxTransformer2DModel
|
| 19 |
-
from pipeline_flux_controlnet_inpaint import FluxControlNetInpaintingPipeline
|
| 20 |
-
|
| 21 |
-
import huggingface_hub
|
| 22 |
-
huggingface_hub.login(os.getenv('HF_TOKEN_FLUX'))
|
| 23 |
-
|
| 24 |
-
bubble_detection_model = YOLO("speech_bubble_model.pt")
|
| 25 |
-
|
| 26 |
-
language_to_ocr = {
|
| 27 |
-
'Simplified Chinese': 'ch_sim',
|
| 28 |
-
'Traditional Chinese': 'ch_tra',
|
| 29 |
-
'Korean': 'ko',
|
| 30 |
-
'Japanese': 'ja',
|
| 31 |
-
'English': 'en',
|
| 32 |
-
}
|
| 33 |
-
|
| 34 |
-
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
|
| 35 |
-
|
| 36 |
-
MARKDOWN = """
|
| 37 |
-
# Made by Nativ
|
| 38 |
-
"""
|
| 39 |
-
|
| 40 |
-
check_min_version("0.30.2")
|
| 41 |
-
transformer = FluxTransformer2DModel.from_pretrained(
|
| 42 |
-
"black-forest-labs/FLUX.1-dev", subfolder='transformer', torch_dytpe=torch.bfloat16
|
| 43 |
-
)
|
| 44 |
-
|
| 45 |
-
cuda_device =torch.device("cuda")
|
| 46 |
-
# Build pipeline
|
| 47 |
-
controlnet = FluxControlNetModel.from_pretrained("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta", torch_dtype=torch.bfloat16)
|
| 48 |
-
pipe = FluxControlNetInpaintingPipeline.from_pretrained(
|
| 49 |
-
"black-forest-labs/FLUX.1-dev",
|
| 50 |
-
controlnet=controlnet,
|
| 51 |
-
transformer=transformer,
|
| 52 |
-
torch_dtype=torch.bfloat16
|
| 53 |
-
).to(cuda_device)
|
| 54 |
-
pipe.transformer.to(torch.bfloat16)
|
| 55 |
-
pipe.controlnet.to(torch.bfloat16)
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
def localize_boxes(merged_results, img_boxes, source_language, target_language):
|
| 59 |
-
# Convert image to base64
|
| 60 |
-
buffered = BytesIO()
|
| 61 |
-
img_boxes.save(buffered, format="PNG")
|
| 62 |
-
img_str = base64.b64encode(buffered.getvalue()).decode()
|
| 63 |
-
|
| 64 |
-
print(merged_results)
|
| 65 |
-
|
| 66 |
-
prompt = f"""You are an expert translator and localization specialist with deep understanding of both {source_language} and {target_language} cultures.
|
| 67 |
-
|
| 68 |
-
Task: Translate the detected text while preserving the cultural context and maintaining visual harmony. Make the results in capital letters.
|
| 69 |
-
|
| 70 |
-
Source Text and Coordinates:
|
| 71 |
-
{merged_results}
|
| 72 |
-
|
| 73 |
-
Requirements:
|
| 74 |
-
1. Maintain the original meaning and tone while adapting to {target_language} cultural context
|
| 75 |
-
2. Keep translations concise and visually balanced (similar character length when possible)
|
| 76 |
-
3. Preserve any:
|
| 77 |
-
- Brand names
|
| 78 |
-
- Product names
|
| 79 |
-
- Technical terms
|
| 80 |
-
- Numbers and units
|
| 81 |
-
4. Consider the visual context from the provided image
|
| 82 |
-
5. Use appropriate formality level for {target_language}
|
| 83 |
-
6. Maintain any special formatting (if present)
|
| 84 |
-
|
| 85 |
-
Format your response EXACTLY as a JSON-like list of dictionaries. Keep the box coordinates EXACTLY as they are, do not change them, only translate the text.
|
| 86 |
-
[{{'box': [[x0, y0], [x1, y0], [x1, y1], [x0, y1]], 'text': 'translated_text'}}]
|
| 87 |
-
|
| 88 |
-
Important: Only output the JSON format above, no explanations or additional text."""
|
| 89 |
-
|
| 90 |
-
client = OpenAI(api_key=OPENAI_API_KEY)
|
| 91 |
-
|
| 92 |
-
response = client.chat.completions.create(
|
| 93 |
-
model="gpt-4o",
|
| 94 |
-
messages=[
|
| 95 |
-
{
|
| 96 |
-
"role": "user",
|
| 97 |
-
"content": [
|
| 98 |
-
{"type": "text", "text": prompt},
|
| 99 |
-
{
|
| 100 |
-
"type": "image_url",
|
| 101 |
-
"image_url": {
|
| 102 |
-
"url": f"data:image/png;base64,{img_str}"
|
| 103 |
-
}
|
| 104 |
-
}
|
| 105 |
-
]
|
| 106 |
-
}
|
| 107 |
-
],
|
| 108 |
-
max_tokens=1000,
|
| 109 |
-
temperature=0
|
| 110 |
-
)
|
| 111 |
-
|
| 112 |
-
try:
|
| 113 |
-
translation_text = response.choices[0].message.content
|
| 114 |
-
translation_text = translation_text.replace("```json", "").replace("```", "").strip()
|
| 115 |
-
translated_results = eval(translation_text)
|
| 116 |
-
return translated_results
|
| 117 |
-
except Exception as e:
|
| 118 |
-
print(f"Error parsing GPT-4o response: {e}")
|
| 119 |
-
return merged_results
|
| 120 |
-
|
| 121 |
-
def merge_boxes(boxes, image_shape, distance_threshold=10):
|
| 122 |
-
"""Merge boxes that are close to each other and return their associated text"""
|
| 123 |
-
if not boxes:
|
| 124 |
-
return []
|
| 125 |
-
|
| 126 |
-
# Extract boxes and create mapping to original data
|
| 127 |
-
boxes_only = [box[0] for box in boxes]
|
| 128 |
-
texts = [box[1] for box in boxes] # Extract the text content
|
| 129 |
-
|
| 130 |
-
# Create a binary mask of all boxes
|
| 131 |
-
height, width = image_shape[:2]
|
| 132 |
-
mask = np.zeros((height, width), dtype=np.uint8)
|
| 133 |
-
|
| 134 |
-
# Draw all boxes on mask and create a mapping of pixel positions to box indices
|
| 135 |
-
box_indices_map = {} # Will store which original box each pixel belongs to
|
| 136 |
-
for idx, coords in enumerate(boxes_only):
|
| 137 |
-
pts = np.array(coords, dtype=np.int32)
|
| 138 |
-
cv2.fillPoly(mask, [pts], 255)
|
| 139 |
-
# Store the indices of boxes for each filled pixel
|
| 140 |
-
y_coords, x_coords = np.where(mask == 255)
|
| 141 |
-
for y, x in zip(y_coords, x_coords):
|
| 142 |
-
if (y, x) not in box_indices_map:
|
| 143 |
-
box_indices_map[(y, x)] = []
|
| 144 |
-
box_indices_map[(y, x)].append(idx)
|
| 145 |
-
|
| 146 |
-
# Dilate to connect nearby components
|
| 147 |
-
kernel = np.ones((distance_threshold, distance_threshold), np.uint8)
|
| 148 |
-
dilated = cv2.dilate(mask, kernel, iterations=1)
|
| 149 |
-
|
| 150 |
-
# Find connected components
|
| 151 |
-
num_labels, labels = cv2.connectedComponents(dilated)
|
| 152 |
-
|
| 153 |
-
# Create new merged boxes with their associated text
|
| 154 |
-
merged_results = []
|
| 155 |
-
for label in range(1, num_labels): # Skip background (0)
|
| 156 |
-
points = np.where(labels == label)
|
| 157 |
-
if len(points[0]): # If component is not empty
|
| 158 |
-
y0, x0 = points[0].min(), points[1].min()
|
| 159 |
-
y1, x1 = points[0].max(), points[1].max()
|
| 160 |
-
# Add small padding
|
| 161 |
-
x0 = max(0, x0 - 2)
|
| 162 |
-
y0 = max(0, y0 - 2)
|
| 163 |
-
x1 = min(width, x1 + 2)
|
| 164 |
-
y1 = min(height, y1 + 2)
|
| 165 |
-
|
| 166 |
-
# Find all original boxes that overlap with this merged box
|
| 167 |
-
box_indices = set()
|
| 168 |
-
for y in range(y0, y1+1):
|
| 169 |
-
for x in range(x0, x1+1):
|
| 170 |
-
if (y, x) in box_indices_map:
|
| 171 |
-
box_indices.update(box_indices_map[(y, x)])
|
| 172 |
-
|
| 173 |
-
# Combine text from all overlapping boxes
|
| 174 |
-
combined_text = ' '.join([texts[idx] for idx in box_indices])
|
| 175 |
-
|
| 176 |
-
merged_results.append({
|
| 177 |
-
'box': [[x0, y0], [x1, y0], [x1, y1], [x0, y1]],
|
| 178 |
-
'text': combined_text
|
| 179 |
-
})
|
| 180 |
-
return merged_results
|
| 181 |
-
|
| 182 |
-
def is_box_inside_yolo(box, yolo_boxes, overlap_threshold=0.5):
|
| 183 |
-
"""
|
| 184 |
-
Check if a text box is inside any of the YOLO-detected speech bubbles.
|
| 185 |
-
box: [[x0,y0], [x1,y0], [x1,y1], [x0,y1]]
|
| 186 |
-
yolo_boxes: list of YOLO boxes in xywh format
|
| 187 |
-
overlap_threshold: minimum overlap ratio required to consider the text inside bubble
|
| 188 |
-
"""
|
| 189 |
-
text_poly = Polygon(box)
|
| 190 |
-
text_area = text_poly.area
|
| 191 |
-
|
| 192 |
-
for yolo_box in yolo_boxes:
|
| 193 |
-
x_center, y_center, width, height = yolo_box
|
| 194 |
-
x1, y1 = x_center - width / 2, y_center - height / 2
|
| 195 |
-
x2, y2 = x_center + width / 2, y_center + height / 2
|
| 196 |
-
bubble_box = [[x1, y1], [x2, y1], [x2, y2], [x1, y2]]
|
| 197 |
-
bubble_poly = Polygon(bubble_box)
|
| 198 |
-
|
| 199 |
-
# Calculate intersection
|
| 200 |
-
if text_poly.intersects(bubble_poly):
|
| 201 |
-
intersection = text_poly.intersection(bubble_poly)
|
| 202 |
-
overlap_ratio = intersection.area / text_area
|
| 203 |
-
if overlap_ratio >= overlap_threshold:
|
| 204 |
-
return True
|
| 205 |
-
|
| 206 |
-
return False
|
| 207 |
-
|
| 208 |
-
def remove_text_regions(image, boxes, yolo_boxes):
|
| 209 |
-
"""Fill detected text regions with white"""
|
| 210 |
-
img_removed = image.copy()
|
| 211 |
-
mask = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8)
|
| 212 |
-
|
| 213 |
-
# Fill all detected boxes with white
|
| 214 |
-
for box in boxes:
|
| 215 |
-
pts = np.array(box[0], dtype=np.int32)
|
| 216 |
-
if is_box_inside_yolo(box[0], yolo_boxes):
|
| 217 |
-
cv2.fillPoly(img_removed, [pts], (255, 255, 255, 255))
|
| 218 |
-
cv2.fillPoly(mask, [pts], (255, 255, 255, 255))
|
| 219 |
-
|
| 220 |
-
img_removed_rgb = cv2.cvtColor(img_removed, cv2.COLOR_BGR2RGB)
|
| 221 |
-
|
| 222 |
-
return img_removed_rgb, mask
|
| 223 |
-
|
| 224 |
-
def fit_text_to_box(text, merged_coordinates, angle=0, font_path):
|
| 225 |
-
"""
|
| 226 |
-
Adjusts the text to fit optimally inside the given box dimensions.
|
| 227 |
-
|
| 228 |
-
Args:
|
| 229 |
-
text (str): The text to fit.
|
| 230 |
-
box_size (tuple): A tuple (width, height) specifying the box dimensions.
|
| 231 |
-
font_path (str): Path to the font file to be used.
|
| 232 |
-
|
| 233 |
-
Returns:
|
| 234 |
-
PIL.Image: An image with the text fitted inside the box.
|
| 235 |
-
"""
|
| 236 |
-
width, height = merged_coordinates[1][0] - merged_coordinates[0][0], merged_coordinates[2][1] - merged_coordinates[1][1]
|
| 237 |
-
font_size = 1
|
| 238 |
-
|
| 239 |
-
# Create a dummy image to measure text size
|
| 240 |
-
dummy_image = Image.new('RGB', (width, height))
|
| 241 |
-
draw = ImageDraw.Draw(dummy_image)
|
| 242 |
-
|
| 243 |
-
# Load a small font initially
|
| 244 |
-
font = ImageFont.truetype(font_path, font_size)
|
| 245 |
-
|
| 246 |
-
while True:
|
| 247 |
-
# Break text into lines that fit within the width
|
| 248 |
-
words = text.split()
|
| 249 |
-
lines = []
|
| 250 |
-
current_line = []
|
| 251 |
-
for word in words:
|
| 252 |
-
test_line = " ".join(current_line + [word])
|
| 253 |
-
test_width = draw.textlength(test_line, font=font)
|
| 254 |
-
if test_width <= width:
|
| 255 |
-
current_line.append(word)
|
| 256 |
-
else:
|
| 257 |
-
lines.append(" ".join(current_line))
|
| 258 |
-
current_line = [word]
|
| 259 |
-
if current_line:
|
| 260 |
-
lines.append(" ".join(current_line))
|
| 261 |
-
|
| 262 |
-
# Calculate total height required for the lines
|
| 263 |
-
line_height = font.getbbox('A')[3] + 5 # Add line spacing
|
| 264 |
-
total_height = len(lines) * line_height
|
| 265 |
-
|
| 266 |
-
# Check if text fits within the height
|
| 267 |
-
if total_height > height or any(draw.textlength(line, font=font) > width for line in lines):
|
| 268 |
-
break
|
| 269 |
-
|
| 270 |
-
# Increment font size
|
| 271 |
-
font_size += 1
|
| 272 |
-
font = ImageFont.truetype(font_path, font_size)
|
| 273 |
-
|
| 274 |
-
# Use the last fitting font
|
| 275 |
-
font_size -= 1
|
| 276 |
-
font = ImageFont.truetype(font_path, font_size)
|
| 277 |
-
|
| 278 |
-
# Create the final image with a transparent background
|
| 279 |
-
image = Image.new('RGBA', (width, height), (255, 255, 255, 0))
|
| 280 |
-
draw = ImageDraw.Draw(image)
|
| 281 |
-
|
| 282 |
-
# Center the text vertically and horizontally
|
| 283 |
-
lines = []
|
| 284 |
-
current_line = []
|
| 285 |
-
for word in text.split():
|
| 286 |
-
test_line = " ".join(current_line + [word])
|
| 287 |
-
if draw.textlength(test_line, font=font) <= width:
|
| 288 |
-
current_line.append(word)
|
| 289 |
-
else:
|
| 290 |
-
lines.append(" ".join(current_line))
|
| 291 |
-
current_line = [word]
|
| 292 |
-
if current_line:
|
| 293 |
-
lines.append(" ".join(current_line))
|
| 294 |
-
|
| 295 |
-
line_height = font.getbbox('A')[3] + 5
|
| 296 |
-
total_text_height = len(lines) * line_height
|
| 297 |
-
y_offset = (height - total_text_height) // 2
|
| 298 |
-
|
| 299 |
-
for line in lines:
|
| 300 |
-
text_width = draw.textlength(line, font=font)
|
| 301 |
-
x_offset = (width - text_width) // 2
|
| 302 |
-
draw.text((x_offset, y_offset), line, font=font, fill="black")
|
| 303 |
-
y_offset += line_height
|
| 304 |
-
|
| 305 |
-
rotated_image = image.rotate(0, expand=True)
|
| 306 |
-
|
| 307 |
-
return rotated_image
|
| 308 |
-
|
| 309 |
-
def shorten_box(merged_coordinates, pct=0):
|
| 310 |
-
# Calculate the center of the box
|
| 311 |
-
center_x = (merged_coordinates[0][0] + merged_coordinates[2][0]) / 2
|
| 312 |
-
center_y = (merged_coordinates[0][1] + merged_coordinates[2][1]) / 2
|
| 313 |
-
|
| 314 |
-
# Calculate the width and height of the box
|
| 315 |
-
width = merged_coordinates[1][0] - merged_coordinates[0][0]
|
| 316 |
-
height = merged_coordinates[2][1] - merged_coordinates[1][1]
|
| 317 |
-
|
| 318 |
-
# Shrink width and height by 10%
|
| 319 |
-
new_width = width * 1-pct/100.
|
| 320 |
-
new_height = height * 1-pct/100.
|
| 321 |
-
|
| 322 |
-
# Calculate the new coordinates
|
| 323 |
-
merged_coordinates_new = np.array([
|
| 324 |
-
[center_x - new_width / 2, center_y - new_height / 2], # Top-left
|
| 325 |
-
[center_x + new_width / 2, center_y - new_height / 2], # Top-right
|
| 326 |
-
[center_x + new_width / 2, center_y + new_height / 2], # Bottom-right
|
| 327 |
-
[center_x - new_width / 2, center_y + new_height / 2] # Bottom-left
|
| 328 |
-
], dtype=int)
|
| 329 |
-
|
| 330 |
-
return merged_coordinates_new
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
def detect_and_show_text(reader, image):
|
| 334 |
-
"""Detect text and show bounding boxes"""
|
| 335 |
-
if isinstance(image, Image.Image):
|
| 336 |
-
img_array = np.array(image)
|
| 337 |
-
else:
|
| 338 |
-
img_array = image
|
| 339 |
-
|
| 340 |
-
# Get YOLO results first
|
| 341 |
-
yolo_results = bubble_detection_model(img_array, conf=7)[0]
|
| 342 |
-
yolo_boxes = yolo_results.boxes.xywh.cpu().numpy() # Get YOLO boxes in xywh format
|
| 343 |
-
|
| 344 |
-
# Detect text
|
| 345 |
-
results = reader.readtext(img_array, text_threshold=0.6)
|
| 346 |
-
|
| 347 |
-
# Create visualization
|
| 348 |
-
img_boxes = img_array.copy()
|
| 349 |
-
|
| 350 |
-
# Ensure we're working with RGB
|
| 351 |
-
if len(img_array.shape) == 3:
|
| 352 |
-
if img_array.shape[2] == 3: # If it's a 3-channel image
|
| 353 |
-
img_boxes = cv2.cvtColor(img_boxes, cv2.COLOR_BGR2RGB)
|
| 354 |
-
|
| 355 |
-
# Draw original EasyOCR boxes on img_boxes
|
| 356 |
-
for result in results:
|
| 357 |
-
pts = np.array(result[0], dtype=np.int32)
|
| 358 |
-
cv2.polylines(img_boxes, [pts], isClosed=True, color=(0, 255, 0), thickness=2) # Draw original boxes in green
|
| 359 |
-
|
| 360 |
-
# Remove text and merge boxes for visualization
|
| 361 |
-
img_removed, mask = remove_text_regions(img_array, results, yolo_boxes)
|
| 362 |
-
merged_results = merge_boxes(results, img_array.shape)
|
| 363 |
-
|
| 364 |
-
# Draw merged detection boxes and text (if needed)
|
| 365 |
-
for merged_result in merged_results:
|
| 366 |
-
pts = np.array(merged_result['box'], dtype=np.int32)
|
| 367 |
-
# Color the box red if inside bubble, blue if outside
|
| 368 |
-
color = (0, 0, 255) if is_box_inside_yolo(merged_result['box'], yolo_boxes) else (255, 0, 0)
|
| 369 |
-
cv2.polylines(img_boxes, [pts], True, color, 2) # Draw merged boxes in red or blue
|
| 370 |
-
|
| 371 |
-
# Convert to RGB
|
| 372 |
-
img_boxes_rgb = cv2.cvtColor(img_boxes, cv2.COLOR_BGR2RGB)
|
| 373 |
-
img_removed_rgb = cv2.cvtColor(img_removed, cv2.COLOR_BGR2RGB)
|
| 374 |
-
mask_rgba = cv2.cvtColor(mask, cv2.COLOR_RGB2RGBA)
|
| 375 |
-
|
| 376 |
-
# Get YOLO visualization without labels
|
| 377 |
-
bubbles_img = yolo_results.plot(labels=False)
|
| 378 |
-
|
| 379 |
-
# Convert to PIL Images
|
| 380 |
-
img_boxes_pil = Image.fromarray(img_boxes_rgb)
|
| 381 |
-
img_removed_pil = Image.fromarray(img_removed_rgb)
|
| 382 |
-
bubbles_img_pil = Image.fromarray(bubbles_img)
|
| 383 |
-
mask_pil = Image.fromarray(mask_rgba)
|
| 384 |
-
|
| 385 |
-
return img_boxes_pil, bubbles_img_pil, img_removed_pil, merged_results, mask_pil
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
def position_text_back(text, merged_coordinates, inpainted_image, font_path):
|
| 389 |
-
coords = shorten_box(merged_coordinates)
|
| 390 |
-
top_left_coords = coords[0]
|
| 391 |
-
text_image = fit_text_to_box(text, coords, font_path)
|
| 392 |
-
|
| 393 |
-
# Create a transparent layer to blend
|
| 394 |
-
layer = Image.new("RGBA", inpainted_image.size, (0, 0, 0, 0))
|
| 395 |
-
|
| 396 |
-
# Paste the text image onto the transparent layer at the specified position
|
| 397 |
-
layer.paste(text_image, tuple(top_left_coords), mask=text_image)
|
| 398 |
-
|
| 399 |
-
# Ensure both images are in "RGBA" mode
|
| 400 |
-
if inpainted_image.mode != "RGBA":
|
| 401 |
-
inpainted_image = inpainted_image.convert("RGBA")
|
| 402 |
-
if layer.mode != "RGBA":
|
| 403 |
-
layer = layer.convert("RGBA")
|
| 404 |
-
|
| 405 |
-
# Blend the transparent layer with the inpainted image
|
| 406 |
-
blended_image = Image.alpha_composite(inpainted_image, layer)
|
| 407 |
-
|
| 408 |
-
return blended_image
|
| 409 |
-
|
| 410 |
-
@spaces.GPU()
|
| 411 |
-
def process(image, mask,
|
| 412 |
-
prompt="background",
|
| 413 |
-
negative_prompt="text",
|
| 414 |
-
controlnet_conditioning_scale=0.9,
|
| 415 |
-
guidance_scale=3.5,
|
| 416 |
-
seed=124,
|
| 417 |
-
num_inference_steps=10,
|
| 418 |
-
true_guidance_scale=3.5
|
| 419 |
-
):
|
| 420 |
-
size = (768, 768)
|
| 421 |
-
image_pil = Image.fromarray(image)
|
| 422 |
-
image_or = image_pil.copy()
|
| 423 |
-
|
| 424 |
-
image_pil = image_pil.convert("RGB").resize(size)
|
| 425 |
-
mask = mask.convert("RGB").resize(size)
|
| 426 |
-
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 427 |
-
result = pipe(
|
| 428 |
-
prompt=prompt,
|
| 429 |
-
height=size[1],
|
| 430 |
-
width=size[0],
|
| 431 |
-
control_image=image_pil,
|
| 432 |
-
control_mask=mask,
|
| 433 |
-
num_inference_steps=num_inference_steps,
|
| 434 |
-
generator=generator,
|
| 435 |
-
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 436 |
-
guidance_scale=guidance_scale,
|
| 437 |
-
negative_prompt=negative_prompt,
|
| 438 |
-
true_guidance_scale=true_guidance_scale
|
| 439 |
-
).images[0]
|
| 440 |
-
|
| 441 |
-
return result.resize((image_or.size[:2]))
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
@spaces.GPU()
|
| 445 |
-
def process_image(image, source_language, target_language, mode, font):
|
| 446 |
-
"""Main processing function for Gradio"""
|
| 447 |
-
if image is None:
|
| 448 |
-
return None, None, None, []
|
| 449 |
-
|
| 450 |
-
# Initialize reader (equivalent to what handle_localization did)
|
| 451 |
-
easy_ocr_lan = language_to_ocr.get(source_language, 'en')
|
| 452 |
-
reader = easyocr.Reader([easy_ocr_lan], model_storage_directory='.', gpu=False)
|
| 453 |
-
|
| 454 |
-
# Detect text and get results
|
| 455 |
-
img_with_boxes, img_bubbles, img_removed_text, merged_results, mask = detect_and_show_text(reader, image)
|
| 456 |
-
|
| 457 |
-
if mode == "Basic":
|
| 458 |
-
img_inpainted = img_removed_text
|
| 459 |
-
else:
|
| 460 |
-
img_inpainted = process(image, mask)
|
| 461 |
-
|
| 462 |
-
# Get translations
|
| 463 |
-
translations = localize_boxes(
|
| 464 |
-
merged_results,
|
| 465 |
-
img_with_boxes,
|
| 466 |
-
source_language,
|
| 467 |
-
target_language
|
| 468 |
-
)
|
| 469 |
-
|
| 470 |
-
# Create initial result with translations
|
| 471 |
-
final_result = img_inpainted.copy()
|
| 472 |
-
for translation in translations:
|
| 473 |
-
box = translation['box']
|
| 474 |
-
text = translation['text']
|
| 475 |
-
final_result = position_text_back(text, box, final_result, font_path=f"fonts/{font}.ttf")
|
| 476 |
-
|
| 477 |
-
# Return all results directly (no need to store in session state)
|
| 478 |
-
return img_with_boxes, img_bubbles, img_inpainted, final_result, translations, np.array(mask)
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
def update_translations(image, edited_texts, translations_list, img_removed_text, font):
|
| 482 |
-
"""Update the image with edited translations"""
|
| 483 |
-
if image is None or img_removed_text is None:
|
| 484 |
-
return None
|
| 485 |
-
|
| 486 |
-
# Convert numpy array back to PIL Image
|
| 487 |
-
img_removed = Image.fromarray(img_removed_text)
|
| 488 |
-
final_result = img_removed.copy()
|
| 489 |
-
|
| 490 |
-
# Update the translations with edited texts
|
| 491 |
-
for trans, new_text in zip(translations_list, edited_texts.split('\n')):
|
| 492 |
-
trans['text'] = new_text.strip()
|
| 493 |
-
box = trans['box']
|
| 494 |
-
final_result = position_text_back(new_text, box, final_result, font_path=f"fonts/{font}.ttf")
|
| 495 |
-
|
| 496 |
-
return np.array(final_result)
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
with gr.Blocks(title="Nativ - Demo") as demo:
|
| 501 |
-
# Store translations list in state
|
| 502 |
-
translations_state = gr.State([])
|
| 503 |
-
|
| 504 |
-
gr.Markdown("# Nativ - Demo")
|
| 505 |
-
|
| 506 |
-
with gr.Row():
|
| 507 |
-
with gr.Column():
|
| 508 |
-
# Input components
|
| 509 |
-
input_image = gr.Image(type="numpy", label="Upload Image")
|
| 510 |
-
source_language = gr.Dropdown(
|
| 511 |
-
choices=['Simplified Chinese', 'Traditional Chinese', 'Korean', 'Japanese', 'English'],
|
| 512 |
-
value='Simplified Chinese',
|
| 513 |
-
label="Source Language"
|
| 514 |
-
)
|
| 515 |
-
target_language = gr.Dropdown(
|
| 516 |
-
choices=['English', 'Spanish', 'Chinese', 'Korean', 'French', 'Japanese'],
|
| 517 |
-
value='English',
|
| 518 |
-
label="Target Language"
|
| 519 |
-
)
|
| 520 |
-
# Toggle for mode selection
|
| 521 |
-
localization_mode = gr.Radio(
|
| 522 |
-
choices=["Basic", "Advanced"],
|
| 523 |
-
value="Basic",
|
| 524 |
-
label="Localization Mode"
|
| 525 |
-
)
|
| 526 |
-
font_selector_i = gr.Dropdown(
|
| 527 |
-
choices=['Arial', 'Ldfcomicsansbold', 'Times New Roman', 'georgia', 'calibri', 'Verdana', 'omniscript_bold', 'helvetica'], # Add more fonts as needed
|
| 528 |
-
value='omniscript_bold',
|
| 529 |
-
label="Select Font"
|
| 530 |
-
)
|
| 531 |
-
process_btn = gr.Button("Localize")
|
| 532 |
-
|
| 533 |
-
with gr.Column():
|
| 534 |
-
# Output components
|
| 535 |
-
speech_bubbles = gr.Image(type="numpy", label="Detected Speech Bubbles", interactive=False)
|
| 536 |
-
detected_boxes = gr.Image(type="numpy", label="Detected Text Regions", interactive=False)
|
| 537 |
-
removed_text = gr.Image(type="numpy", label="Removed Text", interactive=False)
|
| 538 |
-
final_output = gr.Image(type="numpy", label="Final Result", interactive=False)
|
| 539 |
-
|
| 540 |
-
# Translation editing section
|
| 541 |
-
with gr.Row():
|
| 542 |
-
translations_text = gr.Textbox(
|
| 543 |
-
label="Edit Translations (one per line)",
|
| 544 |
-
lines=5,
|
| 545 |
-
placeholder="Edit translations here..."
|
| 546 |
-
)
|
| 547 |
-
font_selector_f = gr.Dropdown(
|
| 548 |
-
choices=['Arial', 'Ldfcomicsansbold', 'Times New Roman', 'georgia', 'calibri', 'Verdana', 'omniscript_bold', 'helvetica'], # Add more fonts as needed
|
| 549 |
-
value='Arial',
|
| 550 |
-
label="Select Font"
|
| 551 |
-
)
|
| 552 |
-
update_btn = gr.Button("Apply Changes")
|
| 553 |
-
|
| 554 |
-
def process_and_show_translations(image, source_lang, target_lang, mode, font):
|
| 555 |
-
boxes, bubbles, removed, final, translations, mask = process_image(image, source_lang, target_lang, mode, font)
|
| 556 |
-
# Extract just the texts and join with newlines
|
| 557 |
-
texts = '\n'.join(t['text'] for t in translations)
|
| 558 |
-
return boxes, bubbles, removed, final, texts, translations
|
| 559 |
-
|
| 560 |
-
# Process button click
|
| 561 |
-
process_btn.click(
|
| 562 |
-
fn=process_and_show_translations,
|
| 563 |
-
inputs=[input_image, source_language, target_language, localization_mode, font_selector_i],
|
| 564 |
-
outputs=[detected_boxes, speech_bubbles, removed_text, final_output, translations_text, translations_state]
|
| 565 |
-
)
|
| 566 |
-
|
| 567 |
-
# Update translations button click
|
| 568 |
-
update_btn.click(
|
| 569 |
-
fn=update_translations,
|
| 570 |
-
inputs=[input_image, translations_text, translations_state, removed_text, font_selector_f],
|
| 571 |
-
outputs=final_output
|
| 572 |
-
)
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
demo.launch(debug=False, show_error=True,share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|