import gradio as gr import pandas as pd tools = pd.read_csv("./data/tools.csv") # all_trades = pd.read_csv('./data/all_trades_profitability.csv') demo = gr.Blocks() INC_TOOLS = [ 'prediction-online', 'prediction-offline', 'claude-prediction-online', 'claude-prediction-offline', 'prediction-offline-sme', 'prediction-online-sme', 'prediction-request-rag', 'prediction-request-reasoning', 'prediction-url-cot-claude', 'prediction-request-rag-claude', 'prediction-request-reasoning-claude' ] def set_error(row): if row.error not in [True, False]: if not row.prompt_response: return True return False return row.error def get_error_data(): tools_inc = tools[tools['tool'].isin(INC_TOOLS)] tools_inc['error'] = tools_inc.apply(set_error, axis=1) error = tools_inc.groupby(['tool', 'request_month_year_week', 'error']).size().unstack().fillna(0).reset_index() error['error_perc'] = (error[True] / (error[False] + error[True]))*100 error['total_requests'] = error[False] + error[True] return error def get_error_data_all(error): error_total = error.groupby('request_month_year_week').agg({'total_requests': 'sum', False: 'sum', True:'sum'}).reset_index() error_total['error_perc'] = (error_total[True] / error_total['total_requests'])*100 # convert column name to string error_total.columns = error_total.columns.astype(str) # format all values to 4 decimal places for error_perc error_total['error_perc'] = error_total['error_perc'].apply(lambda x: round(x, 4)) return error_total error = get_error_data() error_all = get_error_data_all(error) print(error_all.head()) with demo: gr.HTML("

Olas Predict Actual Performance

") gr.Markdown("This app shows the actual performance of Olas Predict tools on the live market.") with gr.Tabs(): with gr.TabItem("🔥 Error Dashboard"): with gr.Row(): gr.Markdown("This plot shows the percentage of requests that resulted in an error.") with gr.Row(): # plot with gr.Column(): gr.LinePlot( value=error_all, x="request_month_year_week", y="error_perc", title="Error Percentage", x_title="Week", y_title="Error Percentage", height=400, show_label=True ) gr.Markdown("This plot shows the percentage of requests that resulted in an error.") # Dropdown for selecting the tool sel_tool = gr.Dropdown( value="prediction-online", choices=INC_TOOLS, label="Select a tool" ) plot_tool_error = gr.LinePlot( title="Error Percentage", x_title="Week", y_title="Error Percentage", render=False ) # Dropdown for selecting the week sel_week = gr.Dropdown( value=error['request_month_year_week'].iloc[-1], choices=error['request_month_year_week'].unique().tolist(), label="Select a week" ) plot_week_error = gr.BarPlot( title="Error Percentage", x_title="Tool", y_title="Error Percentage", render=False ) def update_tool_plot(selected_tool): filtered_data = error[error['tool'] == selected_tool] # convert column name to string filtered_data.columns = filtered_data.columns.astype(str) # conver error_perc to 4 decimal place filtered_data['error_perc'] = filtered_data['error_perc'].apply(lambda x: round(x, 4)) print(filtered_data.head()) return { "x": filtered_data['request_month_year_week'].tolist(), "y": filtered_data['error_perc'].tolist(), } def update_week_plot(selected_week): filtered_data = error[error['request_month_year_week'] == selected_week] filtered_data.columns = filtered_data.columns.astype(str) filtered_data['error_perc'] = filtered_data['error_perc'].apply(lambda x: round(x, 4)) print(filtered_data.head()) return { "x": filtered_data['tool'].tolist(), "y": filtered_data['error_perc'].tolist(), } sel_tool.change(fn=update_tool_plot, inputs=sel_tool, outputs=plot_tool_error) sel_week.change(fn=update_week_plot, inputs=sel_week, outputs=plot_week_error) with gr.Row(): plot_tool_error.render() with gr.Row(): plot_week_error.render() with gr.TabItem("ℹ️ About"): with gr.Accordion("About the Benchmark", open=False): gr.Markdown("This app shows the actual performance of Olas Predict tools on the live market.") demo.queue(default_concurrency_limit=40).launch()