Spaces:
Runtime error
Runtime error
Update llama_cpp_inf.py
Browse files- llama_cpp_inf.py +10 -23
llama_cpp_inf.py
CHANGED
@@ -2,37 +2,24 @@
|
|
2 |
from llama_cpp import Llama
|
3 |
import re
|
4 |
from huggingface_hub import hf_hub_download
|
|
|
5 |
|
6 |
-
|
7 |
-
model_name = "microsoft/Phi-3-mini-4k-instruct-gguf"
|
8 |
-
model_file = "Phi-3-mini-4k-instruct-q4.gguf" # this is the specific model file we'll use in this example. It's a 4-bit quant, but other levels of quantization are available in the model repo if preferred
|
9 |
-
model_path = hf_hub_download(model_name, filename=model_file)
|
10 |
-
|
11 |
-
## Instantiate model from downloaded file
|
12 |
-
llm = Llama(
|
13 |
-
model_path=model_path,
|
14 |
-
n_ctx=4096, # Context length to use
|
15 |
-
n_threads=14, # Number of CPU threads to use
|
16 |
-
n_gpu_layers=3 # Number of model layers to offload to GPU
|
17 |
-
)
|
18 |
-
|
19 |
-
## Generation kwargs
|
20 |
-
generation_kwargs = {
|
21 |
-
"max_tokens":1024,
|
22 |
-
"stop":["<|end|>"],
|
23 |
-
"echo":False, # Echo the prompt in the output
|
24 |
-
"top_k":1 # This is essentially greedy decoding, since the model will always return the highest-probability token. Set this value > 1 for sampling decoding
|
25 |
-
}
|
26 |
|
27 |
def run_inference_lcpp(jsonstr, user_search):
|
28 |
prompt = f"""Instructions for the assistant: Starting from the URLs and the keywords deriving from Google search results and provided to you in JSON format, generate a meaningful summary of the search results that satisfies the user's query.
|
29 |
URLs and keywords in JSON format: {jsonstr}.
|
30 |
User's query to satisfy: {user_search}"""
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
33 |
jsondict = eval(jsonstr)
|
34 |
addon = "Reference websites:\n- "+ '\n- '.join(list(jsondict.keys()))
|
35 |
-
input_string = response
|
36 |
frag_res = re.findall(r'\w+|\s+|[^\w\s]', input_string)
|
37 |
for word in frag_res:
|
38 |
yield word
|
|
|
2 |
from llama_cpp import Llama
|
3 |
import re
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
+
from gradio_client import Client
|
6 |
|
7 |
+
api_client = Client("eswardivi/Phi-3-mini-128k-instruct")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
def run_inference_lcpp(jsonstr, user_search):
|
10 |
prompt = f"""Instructions for the assistant: Starting from the URLs and the keywords deriving from Google search results and provided to you in JSON format, generate a meaningful summary of the search results that satisfies the user's query.
|
11 |
URLs and keywords in JSON format: {jsonstr}.
|
12 |
User's query to satisfy: {user_search}"""
|
13 |
+
response = api_client.predict(
|
14 |
+
prompt, # str in 'Message' Textbox component
|
15 |
+
0.2, # float (numeric value between 0 and 1) in 'Temperature' Slider component
|
16 |
+
True, # bool in 'Sampling' Checkbox component
|
17 |
+
512, # float (numeric value between 128 and 4096) in 'Max new tokens' Slider component
|
18 |
+
api_name="/chat"
|
19 |
+
)
|
20 |
jsondict = eval(jsonstr)
|
21 |
addon = "Reference websites:\n- "+ '\n- '.join(list(jsondict.keys()))
|
22 |
+
input_string = response + "\n\n" + addon
|
23 |
frag_res = re.findall(r'\w+|\s+|[^\w\s]', input_string)
|
24 |
for word in frag_res:
|
25 |
yield word
|