Spaces:
Build error
Build error
File size: 25,406 Bytes
3c3ac9d 9ec1383 3c3ac9d 9ec1383 3c3ac9d 9ec1383 3c3ac9d 9ec1383 3c3ac9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 |
# utils/gemma_translation.py
import os
import logging
from dotenv import load_dotenv
from llama_cpp import Llama
import streamlit as st
from typing import Iterator, Optional, List
import re
import time
import psutil
import uuid
import shutil
import sys
import contextlib
# Import configuration defaults
from config import DEFAULT_CONFIG
from utils.model_bootstrap import ensure_gemma
MODEL_PATH = ensure_gemma()
@contextlib.contextmanager
def suppress_stdout_stderr():
"""Context manager to suppress stdout and stderr."""
# Save original stdout/stderr
old_stdout = sys.stdout
old_stderr = sys.stderr
# Create a null device to redirect output
null_device = open(os.devnull, 'w')
try:
# Redirect stdout/stderr to null device
sys.stdout = null_device
sys.stderr = null_device
yield
finally:
# Restore original stdout/stderr
sys.stdout = old_stdout
sys.stderr = old_stderr
null_device.close()
from .chunking import chunk_text_with_separators
# Load environment variables
load_dotenv()
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Model configuration from config
# ORIGINAL_MODEL_PATH = os.path.join("local_llms", "gemma-3-12b-it-Q4_K_M.gguf")
ORIGINAL_MODEL_PATH = MODEL_PATH
MODEL_DIR = os.path.join("local_llms", "instances")
os.makedirs(MODEL_DIR, exist_ok=True)
# Read configuration from config
DEFAULT_CONTEXT_SIZE = DEFAULT_CONFIG["GEMMA_CONTEXT_SIZE"]
DEFAULT_MAX_TOKENS = DEFAULT_CONFIG["MAX_TOKENS"]
DEFAULT_CHUNK_SIZE = DEFAULT_CONFIG["CHUNK_SIZE"] # Max tokens per chunk
MODEL_INSTANCE_TIMEOUT = DEFAULT_CONFIG["MODEL_INSTANCE_TIMEOUT"] # 30 minutes
# Garbage collection for session-specific model files
def cleanup_model_instances():
"""Remove model instances that haven't been used in the last hour"""
try:
current_time = time.time()
for filename in os.listdir(MODEL_DIR):
file_path = os.path.join(MODEL_DIR, filename)
# Check if file is a model file and older than 1 hour
if filename.endswith(".gguf") and os.path.isfile(file_path):
last_access = os.path.getatime(file_path)
if current_time - last_access > 3600: # 3600 seconds = 1 hour
try:
os.remove(file_path)
logger.info(f"Removed unused model instance: {filename}")
except Exception as e:
logger.error(f"Could not remove model file {filename}: {str(e)}")
except Exception as e:
logger.error(f"Error in cleanup: {str(e)}")
# Run cleanup every time module is imported
cleanup_model_instances()
class LlamaCppTokenizerAdapter:
"""
Adapter class to make llama-cpp Llama model compatible with chunking utility
which expects a HuggingFace tokenizer interface.
"""
def __init__(self, llama_model):
self.model = llama_model
def encode(self, text, add_special_tokens=False):
"""
Tokenize text using llama-cpp's tokenize method.
Args:
text: Text to tokenize
add_special_tokens: Ignored (included for compatibility)
Returns:
List of token IDs
"""
try:
return self.model.tokenize(bytes(text, "utf-8"))
except Exception as e:
logger.warning(f"Tokenization error: {str(e)}")
# Fallback to character-based approximate tokenization (4 chars ≈ 1 token)
return [0] * (len(text) // 4 + 1)
class GemmaTranslator:
"""
Translator using Gemma 3 model in GGUF format with streaming capability.
Uses a session-specific model file for complete isolation.
"""
def __init__(self):
"""Initialize the Gemma translator for the current session."""
self.initialized = False
self.model = None
self.tokenizer = None
self.using_gpu = False
self.session_id = getattr(st.session_state, 'session_id', str(uuid.uuid4()))
# Create a session-specific model path
self.model_path = self._get_session_model_path()
def _get_session_model_path(self):
"""Use the single shared GGUF file instead of copying per session."""
if not os.path.exists(ORIGINAL_MODEL_PATH):
raise FileNotFoundError(f"Original model file not found: {ORIGINAL_MODEL_PATH}")
return ORIGINAL_MODEL_PATH
def load_model(self,
n_gpu_layers: int = DEFAULT_CONFIG["GEMMA_GPU_LAYERS"],
context_size: int = DEFAULT_CONTEXT_SIZE) -> None:
"""
Load the Gemma model with specified parameters.
Args:
n_gpu_layers: Number of layers to offload to GPU
context_size: Context window size
"""
# Parameters already have defaults from config
# No need for additional checks
if self.initialized:
if n_gpu_layers > 0 and not self.using_gpu:
# Need to reload in GPU mode
logger.info("Reloading model with GPU support...")
self.unload_model()
elif n_gpu_layers == 0 and self.using_gpu:
# Need to reload in CPU mode
logger.info("Reloading model in CPU-only mode...")
self.unload_model()
else:
# No need to reload
return
# Check if model file exists
if not os.path.exists(self.model_path):
logger.error(f"Model file not found: {self.model_path}")
raise FileNotFoundError(f"Model file not found: {self.model_path}")
try:
logger.info(f"Loading Gemma model from {self.model_path}...")
logger.info(f"Using GPU layers: {n_gpu_layers}")
# Log current system memory state
memory = psutil.virtual_memory()
logger.info(f"System memory: {memory.percent}% used, {memory.available / (1024**3):.2f}GB available")
# Create Llama model with streaming capability
try:
# Suppress stderr output during model initialization
with suppress_stdout_stderr():
self.model = Llama(
model_path=str(self.model_path),
n_ctx=context_size,
n_gpu_layers=n_gpu_layers,
verbose=False
)
self.using_gpu = n_gpu_layers > 0
# Create tokenizer adapter
self.tokenizer = LlamaCppTokenizerAdapter(self.model)
self.initialized = True
logger.info(f"Gemma model loaded successfully with n_gpu_layers={n_gpu_layers}")
except Exception as load_error:
logger.error(f"Error during model loading: {str(load_error)}")
# If we failed with GPU, try CPU mode
if n_gpu_layers > 0:
logger.info("Attempting fallback to CPU-only mode...")
try:
# Suppress stderr output during model initialization
with suppress_stdout_stderr():
self.model = Llama(
model_path=str(self.model_path),
n_ctx=context_size,
n_gpu_layers=0,
verbose=False
)
self.using_gpu = False
# Create tokenizer adapter
self.tokenizer = LlamaCppTokenizerAdapter(self.model)
self.initialized = True
logger.info("Gemma model loaded successfully in CPU-only mode")
except Exception as cpu_error:
logger.error(f"CPU fallback also failed: {str(cpu_error)}")
raise
else:
raise
except Exception as e:
logger.error(f"Failed to load Gemma model: {str(e)}")
raise
def unload_model(self):
"""Unload the model to free memory"""
if self.initialized:
logger.info("Unloading Gemma model to free memory...")
self.model = None
self.tokenizer = None
self.initialized = False
# Force garbage collection
import gc
gc.collect()
logger.info("Gemma model unloaded")
def __del__(self):
"""Cleanup when object is destroyed"""
self.unload_model()
def generate_translation_prompt(self, text: str, src_lang: str, tgt_lang: str) -> str:
"""
Create a prompt for translation.
Args:
text: Text to translate
src_lang: Source language code ('en', 'ru', 'kk')
tgt_lang: Target language code ('en', 'ru', 'kk')
Returns:
Formatted prompt for the model
"""
lang_map = {
'en': 'English',
'ru': 'Russian',
'kk': 'Kazakh'
}
source_lang = lang_map.get(src_lang, 'Unknown')
target_lang = lang_map.get(tgt_lang, 'Unknown')
system_prompt = (
f"Translate the following text from {source_lang} to {target_lang}. "
f"Provide only the translated text without explanations, introductions, or comments."
)
prompt = f"<|system|>\n{system_prompt}\n<|user|>\n{text}\n<|assistant|>\n"
return prompt
def is_text_too_large(self, text: str) -> bool:
"""
Check if text is too large for the model's context window.
Args:
text: Input text
Returns:
True if text needs chunking, False otherwise
"""
if not self.initialized:
self.load_model()
# Use actual tokenization when possible
try:
tokens = self.model.tokenize(bytes(text, "utf-8"))
token_count = len(tokens)
except Exception:
# Fallback to character-based approximation
token_count = len(text) / 4
# Allow for prompt overhead and model's response tokens
threshold = DEFAULT_CONTEXT_SIZE * 0.9
return token_count > threshold
def _split_text_into_sentences(self, text: str, lang: str) -> List[str]:
"""
Split text into sentences for simple chunking when full chunking fails.
Args:
text: Text to split
lang: Language code
Returns:
List of sentences
"""
if lang in ['ru', 'kk']:
# Russian/Kazakh sentence pattern
pattern = r'(?<=[.!?])\s+'
else:
# English sentence pattern
pattern = r'(?<=[.!?])\s+'
sentences = re.split(pattern, text)
return [s.strip() for s in sentences if s.strip()]
def translate(self,
text: str,
src_lang: str,
tgt_lang: str,
temperature: float = 0.1,
top_p: float = 0.95,
max_tokens: int = DEFAULT_MAX_TOKENS) -> str:
"""
Translate text using Gemma model.
Args:
text: Text to translate
src_lang: Source language code ('en', 'ru', 'kk')
tgt_lang: Target language code ('en', 'ru', 'kk')
temperature: Generation temperature (lower = more deterministic)
top_p: Top-p sampling threshold
max_tokens: Maximum number of tokens to generate
Returns:
Translated text
"""
if self.is_text_too_large(text):
logger.info("Text is too large, using chunking")
return self._translate_large_text(text, src_lang, tgt_lang, temperature, top_p, max_tokens)
# Prepare prompt for normal-sized text
prompt = self.generate_translation_prompt(text, src_lang, tgt_lang)
try:
# Generate translation
response = self.model(
prompt,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stop=["<|user|>", "<|system|>"],
echo=False
)
# Extract translated text
if response and "choices" in response and len(response["choices"]) > 0:
return response["choices"][0]["text"].strip()
else:
logger.warning("Empty or invalid response from model")
return ""
except Exception as e:
logger.error(f"Translation error: {str(e)}")
return f"Error: {str(e)}"
def _translate_large_text(self,
text: str,
src_lang: str,
tgt_lang: str,
temperature: float = 0.1,
top_p: float = 0.95,
max_tokens: int = DEFAULT_MAX_TOKENS) -> str:
"""
Translate large text by splitting it into chunks.
Args:
text: Text to translate
src_lang: Source language code ('en', 'ru', 'kk')
tgt_lang: Target language code ('en', 'ru', 'kk')
temperature: Generation temperature
top_p: Top-p sampling threshold
max_tokens: Maximum tokens to generate
Returns:
Translated text with chunks combined
"""
try:
# Determine language for chunking
lang_for_chunking = 'russian' if src_lang in ['ru', 'kk'] else 'english'
# Use the chunking utility to split text
try:
chunks_with_seps = chunk_text_with_separators(
text=text,
tokenizer=self.tokenizer,
max_tokens=DEFAULT_CHUNK_SIZE,
lang=lang_for_chunking
)
except Exception as chunk_error:
# Fallback to simpler sentence splitting if advanced chunking fails
logger.warning(f"Advanced chunking failed: {str(chunk_error)}. Using simple sentence splitting.")
sentences = self._split_text_into_sentences(text, src_lang)
chunks_with_seps = [(sent, " ") for sent in sentences]
translations = []
for chunk_idx, (chunk, separator) in enumerate(chunks_with_seps):
if not chunk.strip():
translations.append(separator)
continue
logger.info(f"Translating chunk {chunk_idx + 1} of {len(chunks_with_seps)}")
# Translate each chunk
prompt = self.generate_translation_prompt(chunk, src_lang, tgt_lang)
try:
response = self.model(
prompt,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stop=["<|user|>", "<|system|>"],
echo=False
)
if response and "choices" in response and len(response["choices"]) > 0:
translated_chunk = response["choices"][0]["text"].strip()
translations.append(translated_chunk)
translations.append(separator)
else:
logger.warning(f"Empty response for chunk {chunk_idx}")
translations.append(f"[Translation error]")
translations.append(separator)
except Exception as e:
logger.error(f"Error translating chunk {chunk_idx}: {str(e)}")
translations.append(f"[Error: {str(e)}]")
translations.append(separator)
# Combine all translated chunks
combined_text = ''.join(translations)
# Cleanup and postprocessing
return self._postprocess_translation(combined_text)
except Exception as e:
logger.error(f"Large text translation error: {str(e)}")
return f"Error: {str(e)}"
def _postprocess_translation(self, text: str) -> str:
"""Clean up and format the translated text."""
# Remove multiple spaces
text = ' '.join(text.split())
# Fix punctuation spacing
text = text.replace(' .', '.').replace(' ,', ',')
text = text.replace(' !', '!').replace(' ?', '?')
# Fix quote spacing
text = text.replace('" ', '"').replace(' "', '"')
return text
def translate_streaming(self,
text: str,
src_lang: str,
tgt_lang: str,
temperature: float = 0.1,
top_p: float = 0.95,
max_tokens: int = DEFAULT_MAX_TOKENS) -> Iterator[str]:
"""
Stream translation using Gemma model.
Args:
text: Text to translate
src_lang: Source language code ('en', 'ru', 'kk')
tgt_lang: Target language code ('en', 'ru', 'kk')
temperature: Generation temperature (lower = more deterministic)
top_p: Top-p sampling threshold
max_tokens: Maximum number of tokens to generate
Yields:
Chunks of translated text as they're generated
"""
if self.is_text_too_large(text):
logger.info("Text is too large, using chunked streaming")
yield from self._translate_large_text_streaming(text, src_lang, tgt_lang, temperature, top_p, max_tokens)
return
# Prepare prompt for normal-sized text
prompt = self.generate_translation_prompt(text, src_lang, tgt_lang)
try:
# Stream translation
for chunk in self.model(
prompt,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stop=["<|user|>", "<|system|>"],
echo=False,
stream=True
):
if chunk and "choices" in chunk and len(chunk["choices"]) > 0:
token = chunk["choices"][0]["text"]
if token:
yield token
except Exception as e:
logger.error(f"Streaming translation error: {str(e)}")
yield f"Error: {str(e)}"
def _translate_large_text_streaming(self,
text: str,
src_lang: str,
tgt_lang: str,
temperature: float = 0.1,
top_p: float = 0.95,
max_tokens: int = DEFAULT_MAX_TOKENS) -> Iterator[str]:
"""
Stream translation of large text by chunks.
Args:
text: Text to translate
src_lang: Source language code ('en', 'ru', 'kk')
tgt_lang: Target language code ('en', 'ru', 'kk')
temperature: Generation temperature
top_p: Top-p sampling threshold
max_tokens: Maximum tokens to generate
Yields:
Chunks of translated text
"""
try:
# Determine language for chunking
lang_for_chunking = 'russian' if src_lang in ['ru', 'kk'] else 'english'
# Use the chunking utility to split text
try:
chunks_with_seps = chunk_text_with_separators(
text=text,
tokenizer=self.tokenizer,
max_tokens=DEFAULT_CHUNK_SIZE,
lang=lang_for_chunking
)
except Exception as chunk_error:
# Fallback to simpler sentence splitting if advanced chunking fails
logger.warning(f"Advanced chunking failed: {str(chunk_error)}. Using simple sentence splitting.")
sentences = self._split_text_into_sentences(text, src_lang)
chunks_with_seps = [(sent, " ") for sent in sentences]
for chunk_idx, (chunk, separator) in enumerate(chunks_with_seps):
if not chunk.strip():
yield separator
continue
if chunk_idx > 0:
yield "\n\n" # Add visual separation between chunks
# Translate each chunk
prompt = self.generate_translation_prompt(chunk, src_lang, tgt_lang)
try:
# Stream chunk translation
for token_chunk in self.model(
prompt,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stop=["<|user|>", "<|system|>"],
echo=False,
stream=True
):
if token_chunk and "choices" in token_chunk and len(token_chunk["choices"]) > 0:
token = token_chunk["choices"][0]["text"]
if token:
yield token
# Add separator after chunk
yield separator
except Exception as e:
logger.error(f"Error streaming chunk {chunk_idx}: {str(e)}")
yield f"\n[Error translating part {chunk_idx + 1}: {str(e)}]\n"
except Exception as e:
logger.error(f"Large text streaming error: {str(e)}")
yield f"\nError: {str(e)}"
def gemma_translate(text: str, src_lang: str, tgt_lang: str, streaming: bool = True) -> Optional[Iterator[str]]:
"""
Main function to translate text using Gemma 3 model.
Args:
text: Text to translate
src_lang: Source language code ('en', 'ru', 'kk')
tgt_lang: Target language code ('en', 'ru', 'kk')
streaming: Whether to stream the output
Returns:
If streaming is True: Iterator yielding chunks of translated text
If streaming is False: Complete translated text
"""
if not text or not src_lang or not tgt_lang:
return "" if not streaming else iter([""])
translator = GemmaTranslator()
try:
if streaming:
return translator.translate_streaming(text, src_lang, tgt_lang)
else:
return translator.translate(text, src_lang, tgt_lang)
except Exception as e:
logger.error(f"Translation failed: {str(e)}")
return "" if not streaming else iter([f"Error: {str(e)}"])
def display_streaming_translation(text: str, src_lang: str, tgt_lang: str) -> tuple:
"""
Display streaming translation in a Streamlit app.
Args:
text: Text to translate
src_lang: Source language code ('en', 'ru', 'kk')
tgt_lang: Target language code ('en', 'ru', 'kk')
Returns:
tuple: (translated_text, needs_chunking)
"""
if not text:
return "", False
# Check if text needs chunking
translator = GemmaTranslator()
if not translator.initialized:
translator.load_model()
needs_chunking = translator.is_text_too_large(text)
# Create placeholder for streaming output
placeholder = st.empty()
result = ""
# Stream translation
for token in gemma_translate(text, src_lang, tgt_lang, streaming=True):
result += token
placeholder.markdown(result)
return result, needs_chunking |