File size: 6,489 Bytes
84f6785
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import json
import operator
from pathlib import Path
from dotenv import load_dotenv
from datetime import datetime
from typing import List, Dict, Any, TypedDict, Annotated, Optional

from langgraph.graph import StateGraph, END
from langchain_core.messages import AnyMessage, SystemMessage, ToolMessage
from langchain_core.language_models import BaseLanguageModel
from langchain_core.tools import BaseTool

_ = load_dotenv()


class ToolCallLog(TypedDict):
    """
    A TypedDict representing a log entry for a tool call.

    Attributes:
        timestamp (str): The timestamp of when the tool call was made.
        tool_call_id (str): The unique identifier for the tool call.
        name (str): The name of the tool that was called.
        args (Any): The arguments passed to the tool.
        content (str): The content or result of the tool call.
    """

    timestamp: str
    tool_call_id: str
    name: str
    args: Any
    content: str


class AgentState(TypedDict):
    """
    A TypedDict representing the state of an agent.

    Attributes:
        messages (Annotated[List[AnyMessage], operator.add]): A list of messages
            representing the conversation history. The operator.add annotation
            indicates that new messages should be appended to this list.
    """

    messages: Annotated[List[AnyMessage], operator.add]


class Agent:
    """
    A class representing an agent that processes requests and executes tools based on
    language model responses.

    Attributes:
        model (BaseLanguageModel): The language model used for processing.
        tools (Dict[str, BaseTool]): A dictionary of available tools.
        checkpointer (Any): Manages and persists the agent's state.
        system_prompt (str): The system instructions for the agent.
        workflow (StateGraph): The compiled workflow for the agent's processing.
        log_tools (bool): Whether to log tool calls.
        log_path (Path): Path to save tool call logs.
    """

    def __init__(
        self,
        model: BaseLanguageModel,
        tools: List[BaseTool],
        checkpointer: Any = None,
        system_prompt: str = "",
        log_tools: bool = True,
        log_dir: Optional[str] = "logs",
    ):
        """
        Initialize the Agent.

        Args:
            model (BaseLanguageModel): The language model to use.
            tools (List[BaseTool]): A list of available tools.
            checkpointer (Any, optional): State persistence manager. Defaults to None.
            system_prompt (str, optional): System instructions. Defaults to "".
            log_tools (bool, optional): Whether to log tool calls. Defaults to True.
            log_dir (str, optional): Directory to save logs. Defaults to 'logs'.
        """
        self.system_prompt = system_prompt
        self.log_tools = log_tools

        if self.log_tools:
            self.log_path = Path(log_dir or "logs")
            self.log_path.mkdir(exist_ok=True)

        # Define the agent workflow
        workflow = StateGraph(AgentState)
        workflow.add_node("process", self.process_request)
        workflow.add_node("execute", self.execute_tools)
        workflow.add_conditional_edges(
            "process", self.has_tool_calls, {True: "execute", False: END}
        )
        workflow.add_edge("execute", "process")
        workflow.set_entry_point("process")

        self.workflow = workflow.compile(checkpointer=checkpointer)
        self.tools = {t.name: t for t in tools}
        self.model = model.bind_tools(tools)

    def process_request(self, state: AgentState) -> Dict[str, List[AnyMessage]]:
        """
        Process the request using the language model.

        Args:
            state (AgentState): The current state of the agent.

        Returns:
            Dict[str, List[AnyMessage]]: A dictionary containing the model's response.
        """
        messages = state["messages"]
        if self.system_prompt:
            messages = [SystemMessage(content=self.system_prompt)] + messages
        response = self.model.invoke(messages)
        return {"messages": [response]}

    def has_tool_calls(self, state: AgentState) -> bool:
        """
        Check if the response contains any tool calls.

        Args:
            state (AgentState): The current state of the agent.

        Returns:
            bool: True if tool calls exist, False otherwise.
        """
        response = state["messages"][-1]
        return len(response.tool_calls) > 0

    def execute_tools(self, state: AgentState) -> Dict[str, List[ToolMessage]]:
        """
        Execute tool calls from the model's response.

        Args:
            state (AgentState): The current state of the agent.

        Returns:
            Dict[str, List[ToolMessage]]: A dictionary containing tool execution results.
        """
        tool_calls = state["messages"][-1].tool_calls
        results = []

        for call in tool_calls:
            print(f"Executing tool: {call}")
            if call["name"] not in self.tools:
                print("\n....invalid tool....")
                result = "invalid tool, please retry"
            else:
                result = self.tools[call["name"]].invoke(call["args"])

            results.append(
                ToolMessage(
                    tool_call_id=call["id"],
                    name=call["name"],
                    args=call["args"],
                    content=str(result),
                )
            )

        self._save_tool_calls(results)
        print("Returning to model processing!")

        return {"messages": results}

    def _save_tool_calls(self, tool_calls: List[ToolMessage]) -> None:
        """
        Save tool calls to a JSON file with timestamp-based naming.

        Args:
            tool_calls (List[ToolMessage]): List of tool calls to save.
        """
        if not self.log_tools:
            return

        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        filename = self.log_path / f"tool_calls_{timestamp}.json"

        logs: List[ToolCallLog] = []
        for call in tool_calls:
            log_entry = {
                "tool_call_id": call.tool_call_id,
                "name": call.name,
                "args": call.args,
                "content": call.content,
                "timestamp": datetime.now().isoformat(),
            }
            logs.append(log_entry)

        with open(filename, "w") as f:
            json.dump(logs, f, indent=4)