Spaces:
Runtime error
Runtime error
File size: 8,219 Bytes
660acc7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
# Last modified: 2024-03-11
# Copyright 2023 Bingxin Ke, ETH Zurich. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
# More information about the method can be found at https://marigoldmonodepth.github.io
# --------------------------------------------------------------------------
import argparse
import logging
import os
import numpy as np
import torch
from omegaconf import OmegaConf
from tabulate import tabulate
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
from src.dataset import (
BaseDepthDataset,
DatasetMode,
get_dataset,
get_pred_name,
)
from src.util import metric
from src.util.alignment import (
align_depth_least_square,
depth2disparity,
disparity2depth,
)
from src.util.metric import MetricTracker
eval_metrics = [
"abs_relative_difference",
"squared_relative_difference",
"rmse_linear",
"rmse_log",
"log10",
"delta1_acc",
"delta2_acc",
"delta3_acc",
"i_rmse",
"silog_rmse",
]
if "__main__" == __name__:
parser = argparse.ArgumentParser()
# input
parser.add_argument(
"--prediction_dir",
type=str,
required=True,
help="Directory of depth predictions",
)
parser.add_argument(
"--output_dir", type=str, required=True, help="Output directory."
)
# dataset setting
parser.add_argument(
"--dataset_config",
type=str,
required=True,
help="Path to config file of evaluation dataset.",
)
parser.add_argument(
"--base_data_dir",
type=str,
required=True,
help="Path to base data directory.",
)
# LS depth alignment
parser.add_argument(
"--alignment",
choices=[None, "least_square", "least_square_disparity"],
default=None,
help="Method to estimate scale and shift between predictions and ground truth.",
)
parser.add_argument(
"--alignment_max_res",
type=int,
default=None,
help="Max operating resolution used for LS alignment",
)
parser.add_argument("--no_cuda", action="store_true", help="Run without cuda")
args = parser.parse_args()
prediction_dir = args.prediction_dir
output_dir = args.output_dir
dataset_config = args.dataset_config
base_data_dir = args.base_data_dir
alignment = args.alignment
alignment_max_res = args.alignment_max_res
no_cuda = args.no_cuda
pred_suffix = ".npy"
os.makedirs(output_dir, exist_ok=True)
# -------------------- Device --------------------
cuda_avail = torch.cuda.is_available() and not no_cuda
device = torch.device("cuda" if cuda_avail else "cpu")
logging.info(f"Device: {device}")
# -------------------- Data --------------------
cfg_data = OmegaConf.load(dataset_config)
dataset: BaseDepthDataset = get_dataset(
cfg_data, base_data_dir=base_data_dir, mode=DatasetMode.EVAL
)
dataloader = DataLoader(dataset, batch_size=1, num_workers=0)
# -------------------- Eval metrics --------------------
metric_funcs = [getattr(metric, _met) for _met in eval_metrics]
metric_tracker = MetricTracker(*[m.__name__ for m in metric_funcs])
metric_tracker.reset()
# -------------------- Per-sample metric file head --------------------
per_sample_filename = os.path.join(output_dir, "per_sample_metrics.csv")
# write title
with open(per_sample_filename, "w+") as f:
f.write("filename,")
f.write(",".join([m.__name__ for m in metric_funcs]))
f.write("\n")
# -------------------- Evaluate --------------------
for data in tqdm(dataloader, desc="Evaluating"):
# GT data
depth_raw_ts = data["depth_raw_linear"].squeeze()
valid_mask_ts = data["valid_mask_raw"].squeeze()
rgb_name = data["rgb_relative_path"][0]
depth_raw = depth_raw_ts.numpy()
valid_mask = valid_mask_ts.numpy()
depth_raw_ts = depth_raw_ts.to(device)
valid_mask_ts = valid_mask_ts.to(device)
# Load predictions
rgb_basename = os.path.basename(rgb_name)
pred_basename = get_pred_name(
rgb_basename, dataset.name_mode, suffix=pred_suffix
)
pred_name = os.path.join(os.path.dirname(rgb_name), pred_basename)
pred_path = os.path.join(prediction_dir, pred_name)
depth_pred = np.load(pred_path)
if not os.path.exists(pred_path):
logging.warn(f"Can't find prediction: {pred_path}")
continue
# Align with GT using least square
if "least_square" == alignment:
depth_pred, scale, shift = align_depth_least_square(
gt_arr=depth_raw,
pred_arr=depth_pred,
valid_mask_arr=valid_mask,
return_scale_shift=True,
max_resolution=alignment_max_res,
)
elif "least_square_disparity" == alignment:
# convert GT depth -> GT disparity
gt_disparity, gt_non_neg_mask = depth2disparity(
depth=depth_raw, return_mask=True
)
# LS alignment in disparity space
pred_non_neg_mask = depth_pred > 0
valid_nonnegative_mask = valid_mask & gt_non_neg_mask & pred_non_neg_mask
disparity_pred, scale, shift = align_depth_least_square(
gt_arr=gt_disparity,
pred_arr=depth_pred,
valid_mask_arr=valid_nonnegative_mask,
return_scale_shift=True,
max_resolution=alignment_max_res,
)
# convert to depth
disparity_pred = np.clip(
disparity_pred, a_min=1e-3, a_max=None
) # avoid 0 disparity
depth_pred = disparity2depth(disparity_pred)
# Clip to dataset min max
depth_pred = np.clip(
depth_pred, a_min=dataset.min_depth, a_max=dataset.max_depth
)
# clip to d > 0 for evaluation
depth_pred = np.clip(depth_pred, a_min=1e-6, a_max=None)
# Evaluate (using CUDA if available)
sample_metric = []
depth_pred_ts = torch.from_numpy(depth_pred).to(device)
for met_func in metric_funcs:
_metric_name = met_func.__name__
_metric = met_func(depth_pred_ts, depth_raw_ts, valid_mask_ts).item()
sample_metric.append(_metric.__str__())
metric_tracker.update(_metric_name, _metric)
# Save per-sample metric
with open(per_sample_filename, "a+") as f:
f.write(pred_name + ",")
f.write(",".join(sample_metric))
f.write("\n")
# -------------------- Save metrics to file --------------------
eval_text = f"Evaluation metrics:\n\
of predictions: {prediction_dir}\n\
on dataset: {dataset.disp_name}\n\
with samples in: {dataset.filename_ls_path}\n"
eval_text += f"min_depth = {dataset.min_depth}\n"
eval_text += f"max_depth = {dataset.max_depth}\n"
eval_text += tabulate(
[metric_tracker.result().keys(), metric_tracker.result().values()]
)
metrics_filename = "eval_metrics"
if alignment:
metrics_filename += f"-{alignment}"
metrics_filename += ".txt"
_save_to = os.path.join(output_dir, metrics_filename)
with open(_save_to, "w+") as f:
f.write(eval_text)
logging.info(f"Evaluation metrics saved to {_save_to}")
|