File size: 8,219 Bytes
660acc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# Last modified: 2024-03-11
# Copyright 2023 Bingxin Ke, ETH Zurich. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
# More information about the method can be found at https://marigoldmonodepth.github.io
# --------------------------------------------------------------------------

import argparse
import logging
import os

import numpy as np
import torch
from omegaconf import OmegaConf
from tabulate import tabulate
from torch.utils.data import DataLoader
from tqdm.auto import tqdm

from src.dataset import (
    BaseDepthDataset,
    DatasetMode,
    get_dataset,
    get_pred_name,
)
from src.util import metric
from src.util.alignment import (
    align_depth_least_square,
    depth2disparity,
    disparity2depth,
)
from src.util.metric import MetricTracker

eval_metrics = [
    "abs_relative_difference",
    "squared_relative_difference",
    "rmse_linear",
    "rmse_log",
    "log10",
    "delta1_acc",
    "delta2_acc",
    "delta3_acc",
    "i_rmse",
    "silog_rmse",
]

if "__main__" == __name__:
    parser = argparse.ArgumentParser()
    # input
    parser.add_argument(
        "--prediction_dir",
        type=str,
        required=True,
        help="Directory of depth predictions",
    )
    parser.add_argument(
        "--output_dir", type=str, required=True, help="Output directory."
    )

    # dataset setting
    parser.add_argument(
        "--dataset_config",
        type=str,
        required=True,
        help="Path to config file of evaluation dataset.",
    )
    parser.add_argument(
        "--base_data_dir",
        type=str,
        required=True,
        help="Path to base data directory.",
    )

    # LS depth alignment
    parser.add_argument(
        "--alignment",
        choices=[None, "least_square", "least_square_disparity"],
        default=None,
        help="Method to estimate scale and shift between predictions and ground truth.",
    )
    parser.add_argument(
        "--alignment_max_res",
        type=int,
        default=None,
        help="Max operating resolution used for LS alignment",
    )

    parser.add_argument("--no_cuda", action="store_true", help="Run without cuda")

    args = parser.parse_args()

    prediction_dir = args.prediction_dir
    output_dir = args.output_dir

    dataset_config = args.dataset_config
    base_data_dir = args.base_data_dir

    alignment = args.alignment
    alignment_max_res = args.alignment_max_res

    no_cuda = args.no_cuda
    pred_suffix = ".npy"

    os.makedirs(output_dir, exist_ok=True)

    # -------------------- Device --------------------
    cuda_avail = torch.cuda.is_available() and not no_cuda
    device = torch.device("cuda" if cuda_avail else "cpu")
    logging.info(f"Device: {device}")

    # -------------------- Data --------------------
    cfg_data = OmegaConf.load(dataset_config)

    dataset: BaseDepthDataset = get_dataset(
        cfg_data, base_data_dir=base_data_dir, mode=DatasetMode.EVAL
    )

    dataloader = DataLoader(dataset, batch_size=1, num_workers=0)

    # -------------------- Eval metrics --------------------
    metric_funcs = [getattr(metric, _met) for _met in eval_metrics]

    metric_tracker = MetricTracker(*[m.__name__ for m in metric_funcs])
    metric_tracker.reset()

    # -------------------- Per-sample metric file head --------------------
    per_sample_filename = os.path.join(output_dir, "per_sample_metrics.csv")
    # write title
    with open(per_sample_filename, "w+") as f:
        f.write("filename,")
        f.write(",".join([m.__name__ for m in metric_funcs]))
        f.write("\n")

    # -------------------- Evaluate --------------------
    for data in tqdm(dataloader, desc="Evaluating"):
        # GT data
        depth_raw_ts = data["depth_raw_linear"].squeeze()
        valid_mask_ts = data["valid_mask_raw"].squeeze()
        rgb_name = data["rgb_relative_path"][0]

        depth_raw = depth_raw_ts.numpy()
        valid_mask = valid_mask_ts.numpy()

        depth_raw_ts = depth_raw_ts.to(device)
        valid_mask_ts = valid_mask_ts.to(device)

        # Load predictions
        rgb_basename = os.path.basename(rgb_name)
        pred_basename = get_pred_name(
            rgb_basename, dataset.name_mode, suffix=pred_suffix
        )
        pred_name = os.path.join(os.path.dirname(rgb_name), pred_basename)
        pred_path = os.path.join(prediction_dir, pred_name)
        depth_pred = np.load(pred_path)

        if not os.path.exists(pred_path):
            logging.warn(f"Can't find prediction: {pred_path}")
            continue

        # Align with GT using least square
        if "least_square" == alignment:
            depth_pred, scale, shift = align_depth_least_square(
                gt_arr=depth_raw,
                pred_arr=depth_pred,
                valid_mask_arr=valid_mask,
                return_scale_shift=True,
                max_resolution=alignment_max_res,
            )
        elif "least_square_disparity" == alignment:
            # convert GT depth -> GT disparity
            gt_disparity, gt_non_neg_mask = depth2disparity(
                depth=depth_raw, return_mask=True
            )
            # LS alignment in disparity space
            pred_non_neg_mask = depth_pred > 0
            valid_nonnegative_mask = valid_mask & gt_non_neg_mask & pred_non_neg_mask

            disparity_pred, scale, shift = align_depth_least_square(
                gt_arr=gt_disparity,
                pred_arr=depth_pred,
                valid_mask_arr=valid_nonnegative_mask,
                return_scale_shift=True,
                max_resolution=alignment_max_res,
            )
            # convert to depth
            disparity_pred = np.clip(
                disparity_pred, a_min=1e-3, a_max=None
            )  # avoid 0 disparity
            depth_pred = disparity2depth(disparity_pred)

        # Clip to dataset min max
        depth_pred = np.clip(
            depth_pred, a_min=dataset.min_depth, a_max=dataset.max_depth
        )

        # clip to d > 0 for evaluation
        depth_pred = np.clip(depth_pred, a_min=1e-6, a_max=None)

        # Evaluate (using CUDA if available)
        sample_metric = []
        depth_pred_ts = torch.from_numpy(depth_pred).to(device)

        for met_func in metric_funcs:
            _metric_name = met_func.__name__
            _metric = met_func(depth_pred_ts, depth_raw_ts, valid_mask_ts).item()
            sample_metric.append(_metric.__str__())
            metric_tracker.update(_metric_name, _metric)

        # Save per-sample metric
        with open(per_sample_filename, "a+") as f:
            f.write(pred_name + ",")
            f.write(",".join(sample_metric))
            f.write("\n")

    # -------------------- Save metrics to file --------------------
    eval_text = f"Evaluation metrics:\n\
    of predictions: {prediction_dir}\n\
    on dataset: {dataset.disp_name}\n\
    with samples in: {dataset.filename_ls_path}\n"

    eval_text += f"min_depth = {dataset.min_depth}\n"
    eval_text += f"max_depth = {dataset.max_depth}\n"

    eval_text += tabulate(
        [metric_tracker.result().keys(), metric_tracker.result().values()]
    )

    metrics_filename = "eval_metrics"
    if alignment:
        metrics_filename += f"-{alignment}"
    metrics_filename += ".txt"

    _save_to = os.path.join(output_dir, metrics_filename)
    with open(_save_to, "w+") as f:
        f.write(eval_text)
        logging.info(f"Evaluation metrics saved to {_save_to}")