import gradio as gr import torch from huggingface_hub import from_pretrained_fastai from pathlib import Path examples = ["examples/example_0.png", "examples/example_1.png", "examples/example_2.png", "examples/example_3.png", "examples/example_4.png"] repo_id = "hugginglearners/rice_image_classification" path = Path("./") def get_y(r): return r["label"] def get_x(r): return path/r["fname"] learner = from_pretrained_fastai(repo_id) labels = learner.dls.vocab def inference(image): label_predict, _, probs = learner.predict(image) labels_probs = {labels[i]: float(probs[i]) for i, _ in enumerate(labels)} return labels_probs gr.Interface( fn=inference, title="Rice Disease Classification", description="Predict which type of rice disease is affecting the leaf: Tungro, Rice Blast, Bacterial Blight, or Healthy Rice Leaf.", inputs=gr.Image(), examples=examples, outputs=gr.Label(num_top_classes=4, label='Prediction'), cache_examples=False, article="Authors: Your Team Name", ).launch(debug=True, enable_queue=True)