Spaces:
Sleeping
Sleeping
File size: 6,888 Bytes
ed93606 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
"""
ํ๊ตญ์ด CLIP ๋ชจ๋ธ ๊ตฌํ
์ด ๋ชจ๋์ HuggingFace์ ํ๊ตญ์ด CLIP ๋ชจ๋ธ์ ์ฌ์ฉํ์ฌ ํ
์คํธ์ ์ด๋ฏธ์ง์ ์๋ฒ ๋ฉ์ ์์ฑ
"""
import os
import sys
import logging
import torch
from transformers import CLIPProcessor, CLIPModel
from PIL import Image
import requests
from io import BytesIO
import numpy as np
# ์บ์ ๋๋ ํ ๋ฆฌ ์ค์
os.environ['TRANSFORMERS_CACHE'] = '/tmp/huggingface_cache'
os.environ['HF_HOME'] = '/tmp/huggingface_cache'
# ๋๋ ํ ๋ฆฌ ์์ฑ
os.makedirs('/tmp/huggingface_cache', exist_ok=True)
os.makedirs('/tmp/uploads', exist_ok=True)
# ๋ก๊น
์ค์
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# ๋ชจ๋ธ ์ค์ - ํ๊ฒฝ ๋ณ์์์ ๊ฐ์ ธ์ค๊ฑฐ๋ ๊ธฐ๋ณธ๊ฐ ์ฌ์ฉ
CLIP_MODEL_NAME = os.getenv('CLIP_MODEL_NAME', 'Bingsu/clip-vit-large-patch14-ko')
DEVICE = "cuda" if torch.cuda.is_available() and os.getenv('USE_GPU', 'True').lower() == 'true' else "cpu"
class KoreanCLIPModel:
"""
ํ๊ตญ์ด CLIP ๋ชจ๋ธ ํด๋์ค
ํ
์คํธ์ ์ด๋ฏธ์ง๋ฅผ ์๋ฒ ๋ฉํ๊ณ ์ ์ฌ๋๋ฅผ ๊ณ์ฐํ๋ ๊ธฐ๋ฅ ์ ๊ณต
"""
def __init__(self, model_name=CLIP_MODEL_NAME, device=DEVICE):
"""
CLIP ๋ชจ๋ธ ์ด๊ธฐํ
Args:
model_name (str): ์ฌ์ฉํ CLIP ๋ชจ๋ธ ์ด๋ฆ ๋๋ ๊ฒฝ๋ก
device (str): ์ฌ์ฉํ ์ฅ์น ('cuda' ๋๋ 'cpu')
"""
self.device = device
self.model_name = model_name
logger.info(f"CLIP ๋ชจ๋ธ '{model_name}' ๋ก๋ ์ค (device: {device})...")
try:
# ์บ์ ๋๋ ํ ๋ฆฌ ์ค์
os.environ["TRANSFORMERS_CACHE"] = "/tmp/transformers_cache"
os.makedirs("/tmp/transformers_cache", exist_ok=True)
self.model = CLIPModel.from_pretrained(model_name).to(device)
self.processor = CLIPProcessor.from_pretrained(model_name)
logger.info("CLIP ๋ชจ๋ธ ๋ก๋ ์๋ฃ")
except Exception as e:
logger.error(f"CLIP ๋ชจ๋ธ ๋ก๋ ์คํจ: {str(e)}")
raise
def encode_text(self, text):
"""
ํ
์คํธ๋ฅผ ์๋ฒ ๋ฉ ๋ฒกํฐ๋ก ๋ณํ
Args:
text (str or list): ์ธ์ฝ๋ฉํ ํ
์คํธ ๋๋ ํ
์คํธ ๋ฆฌ์คํธ
Returns:
numpy.ndarray: ์๋ฒ ๋ฉ ๋ฒกํฐ
"""
if isinstance(text, str):
text = [text]
try:
with torch.no_grad():
# ํ
์คํธ ์ธ์ฝ๋ฉ
inputs = self.processor(text=text, return_tensors="pt", padding=True, truncation=True).to(self.device)
text_features = self.model.get_text_features(**inputs)
# ํ
์คํธ ํน์ฑ ์ ๊ทํ
text_embeddings = text_features / text_features.norm(dim=1, keepdim=True)
return text_embeddings.cpu().numpy()
except Exception as e:
logger.error(f"ํ
์คํธ ์ธ์ฝ๋ฉ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}")
return np.zeros((len(text), self.model.text_embed_dim))
def encode_image(self, image_source):
"""
์ด๋ฏธ์ง๋ฅผ ์๋ฒ ๋ฉ ๋ฒกํฐ๋ก ๋ณํ
Args:
image_source: ์ธ์ฝ๋ฉํ ์ด๋ฏธ์ง (PIL Image, URL ๋๋ ์ด๋ฏธ์ง ๊ฒฝ๋ก)
Returns:
numpy.ndarray: ์๋ฒ ๋ฉ ๋ฒกํฐ
"""
try:
# ์ด๋ฏธ์ง ๋ก๋ (URL, ํ์ผ ๊ฒฝ๋ก, PIL ์ด๋ฏธ์ง ๊ฐ์ฒด ๋๋ Base64)
if isinstance(image_source, str):
if image_source.startswith('http'):
# URL์์ ์ด๋ฏธ์ง ๋ก๋
response = requests.get(image_source)
image = Image.open(BytesIO(response.content)).convert('RGB')
else:
# ๋ก์ปฌ ํ์ผ์์ ์ด๋ฏธ์ง ๋ก๋
image = Image.open(image_source).convert('RGB')
else:
# ์ด๋ฏธ PIL ์ด๋ฏธ์ง ๊ฐ์ฒด์ธ ๊ฒฝ์ฐ
image = image_source.convert('RGB')
with torch.no_grad():
# ์ด๋ฏธ์ง ์ธ์ฝ๋ฉ
inputs = self.processor(images=image, return_tensors="pt").to(self.device)
image_features = self.model.get_image_features(**inputs)
# ์ด๋ฏธ์ง ํน์ฑ ์ ๊ทํ
image_embeddings = image_features / image_features.norm(dim=1, keepdim=True)
return image_embeddings.cpu().numpy()
except Exception as e:
logger.error(f"์ด๋ฏธ์ง ์ธ์ฝ๋ฉ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}")
return np.zeros((1, self.model.vision_embed_dim))
def calculate_similarity(self, text_embedding, image_embedding=None):
"""
ํ
์คํธ์ ์ด๋ฏธ์ง ์๋ฒ ๋ฉ ๊ฐ์ ์ ์ฌ๋ ๊ณ์ฐ
Args:
text_embedding (numpy.ndarray): ํ
์คํธ ์๋ฒ ๋ฉ
image_embedding (numpy.ndarray, optional): ์ด๋ฏธ์ง ์๋ฒ ๋ฉ (์์ผ๋ฉด ํ
์คํธ๋ง ๋น๊ต)
Returns:
float: ์ ์ฌ๋ ์ ์ (0~1 ์ฌ์ด)
"""
if image_embedding is None:
# ํ
์คํธ-ํ
์คํธ ์ ์ฌ๋ ๊ณ์ฐ (์ฝ์ฌ์ธ ์ ์ฌ๋)
similarity = np.dot(text_embedding, text_embedding.T)[0, 0]
else:
# ํ
์คํธ-์ด๋ฏธ์ง ์ ์ฌ๋ ๊ณ์ฐ (์ฝ์ฌ์ธ ์ ์ฌ๋)
similarity = np.dot(text_embedding, image_embedding.T)[0, 0]
# ์ ์ฌ๋๋ฅผ 0~1 ๋ฒ์๋ก ์ ๊ทํ
similarity = (similarity + 1) / 2
return float(similarity)
def encode_batch_texts(self, texts):
"""
์ฌ๋ฌ ํ
์คํธ๋ฅผ ํ ๋ฒ์ ์๋ฒ ๋ฉ
Args:
texts (list): ํ
์คํธ ๋ชฉ๋ก
Returns:
numpy.ndarray: ์๋ฒ ๋ฉ ๋ฒกํฐ ๋ฐฐ์ด
"""
# ๋ฐฐ์น ์ฒ๋ฆฌ๋ฅผ ์ํ ์ฝ๋
# ์ค์ ๊ตฌํ์์๋ ๋ฉ๋ชจ๋ฆฌ ํฌ๊ธฐ์ ๋ฐ๋ผ ์ ์ ํ ๋ฐฐ์น ํฌ๊ธฐ ์กฐ์ ํ์
return self.encode_text(texts)
# ๋ชจ๋ ํ
์คํธ์ฉ ์ฝ๋
if __name__ == "__main__":
# ๋ชจ๋ธ ์ด๊ธฐํ
clip_model = KoreanCLIPModel()
# ์ํ ํ
์คํธ ์ธ์ฝ๋ฉ
sample_text = "๊ฒ์์ ์ง๊ฐ์ ์์ด๋ฒ๋ ธ์ต๋๋ค. ํ๊ธ๊ณผ ์นด๋๊ฐ ๋ค์ด์์ด์."
text_embedding = clip_model.encode_text(sample_text)
print(f"ํ
์คํธ ์๋ฒ ๋ฉ shape: {text_embedding.shape}")
# ์ ์ฌ๋ ๊ณ์ฐ (ํ
์คํธ๋ง)
sample_text2 = "๊ฒ์์ ์ง๊ฐ์ ์ฐพ์์ต๋๋ค. ์์ ํ๊ธ๊ณผ ์นด๋๊ฐ ์์ต๋๋ค."
text_embedding2 = clip_model.encode_text(sample_text2)
similarity = clip_model.calculate_similarity(text_embedding, text_embedding2)
print(f"ํ
์คํธ ๊ฐ ์ ์ฌ๋: {similarity:.4f}") |