File size: 10,475 Bytes
ed93606
 
 
 
 
 
 
 
 
 
 
 
 
ac98818
 
ed93606
 
ac3bdbc
 
ed93606
 
ac3bdbc
 
ed93606
 
ac3bdbc
ed93606
 
 
 
 
 
f965b35
 
 
f5f56d1
 
 
 
 
 
 
 
 
 
f965b35
 
f5f56d1
 
 
 
 
 
 
 
 
 
 
ed93606
 
 
 
 
 
 
660088f
ed93606
 
f965b35
ed93606
 
 
 
ac3bdbc
 
 
 
f965b35
b0a57bf
 
 
660088f
f965b35
b0a57bf
 
f965b35
 
 
 
 
 
b0a57bf
 
 
 
ac3bdbc
ed93606
ac3bdbc
660088f
 
ed93606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f965b35
 
ed93606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f965b35
 
 
 
 
 
 
 
 
 
 
 
 
ed93606
 
f965b35
 
 
 
 
 
 
 
 
 
 
ed93606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f965b35
 
ed93606
f965b35
ed93606
f965b35
ed93606
 
f965b35
 
ed93606
 
 
 
f965b35
 
 
ed93606
f965b35
 
 
 
 
 
 
 
 
 
 
 
 
 
ed93606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
"""
ํ•œ๊ตญ์–ด CLIP ๋ชจ๋ธ ๊ตฌํ˜„
์ด ๋ชจ๋“ˆ์€ HuggingFace์˜ ํ•œ๊ตญ์–ด CLIP ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ํ…์ŠคํŠธ์™€ ์ด๋ฏธ์ง€์˜ ์ž„๋ฒ ๋”ฉ์„ ์ƒ์„ฑ
"""
import os
import sys
import logging
import torch
from transformers import CLIPProcessor, CLIPModel
from PIL import Image
import requests
from io import BytesIO
import numpy as np
import time


# ์บ์‹œ ๋””๋ ‰ํ† ๋ฆฌ ์„ค์ •
os.environ['TRANSFORMERS_CACHE'] = '/tmp/huggingface_cache'
os.environ['HF_HOME'] = '/tmp/huggingface_cache'

# ๋””๋ ‰ํ† ๋ฆฌ ์ƒ์„ฑ
os.makedirs('/tmp/huggingface_cache', exist_ok=True)
os.makedirs('/tmp/uploads', exist_ok=True)

# ๋กœ๊น… ์„ค์ •
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# ๋ชจ๋ธ ์„ค์ • - ํ™˜๊ฒฝ ๋ณ€์ˆ˜์—์„œ ๊ฐ€์ ธ์˜ค๊ฑฐ๋‚˜ ๊ธฐ๋ณธ๊ฐ’ ์‚ฌ์šฉ
CLIP_MODEL_NAME = os.getenv('CLIP_MODEL_NAME', 'Bingsu/clip-vit-large-patch14-ko')
DEVICE = "cuda" if torch.cuda.is_available() and os.getenv('USE_GPU', 'True').lower() == 'true' else "cpu"

# ์š”์ฒญ ํƒ€์ž„์•„์›ƒ ์„ค์ •
REQUEST_TIMEOUT = int(os.getenv('REQUEST_TIMEOUT', '10'))  # 10์ดˆ ํƒ€์ž„์•„์›ƒ

def preload_clip_model():
    """CLIP ๋ชจ๋ธ์„ ์‚ฌ์ „์— ๋‹ค์šด๋กœ๋“œํ•˜๊ณ  ์บ์‹œ"""
    try:
        start_time = time.time()
        logger.info(f"CLIP ๋ชจ๋ธ ์‚ฌ์ „ ๋‹ค์šด๋กœ๋“œ ์‹œ์ž‘: {CLIP_MODEL_NAME}")
        
        # ๋ชจ๋ธ๊ณผ ํ”„๋กœ์„ธ์„œ ์‚ฌ์ „ ๋‹ค์šด๋กœ๋“œ
        CLIPModel.from_pretrained(
            CLIP_MODEL_NAME, 
            cache_dir='/tmp/huggingface_cache',
            low_cpu_mem_usage=True,  # ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ ์ตœ์ ํ™”
            torch_dtype=torch.float32  # float32 ํƒ€์ž…์œผ๋กœ ํ†ต์ผ
        )
        
        CLIPProcessor.from_pretrained(
            CLIP_MODEL_NAME, 
            cache_dir='/tmp/huggingface_cache'
        )
        
        logger.info(f"โœ… CLIP ๋ชจ๋ธ ์‚ฌ์ „ ๋‹ค์šด๋กœ๋“œ ์™„๋ฃŒ (์†Œ์š”์‹œ๊ฐ„: {time.time() - start_time:.2f}์ดˆ)")
    except Exception as e:
        logger.error(f"โŒ CLIP ๋ชจ๋ธ ์‚ฌ์ „ ๋‹ค์šด๋กœ๋“œ ์‹คํŒจ: {str(e)}")

class KoreanCLIPModel:
    """
    ํ•œ๊ตญ์–ด CLIP ๋ชจ๋ธ ํด๋ž˜์Šค
    ํ…์ŠคํŠธ์™€ ์ด๋ฏธ์ง€๋ฅผ ์ž„๋ฒ ๋”ฉํ•˜๊ณ  ์œ ์‚ฌ๋„๋ฅผ ๊ณ„์‚ฐํ•˜๋Š” ๊ธฐ๋Šฅ ์ œ๊ณต
    """
    
    def __init__(self, model_name=CLIP_MODEL_NAME, device=DEVICE):
        """CLIP ๋ชจ๋ธ ์ดˆ๊ธฐํ™” - ๋ฉ”๋ชจ๋ฆฌ ์ตœ์ ํ™”"""
        self.device = device
        self.model_name = model_name
        self.embedding_dim = None  # ์ถ”๊ฐ€: ์ž„๋ฒ ๋”ฉ ์ฐจ์› ์ €์žฅ
        
        logger.info(f"CLIP ๋ชจ๋ธ '{model_name}' ๋กœ๋“œ ์ค‘ (device: {device})...")
        
        try:
            # ์บ์‹œ ๋””๋ ‰ํ† ๋ฆฌ ์„ค์ •
            os.environ["TRANSFORMERS_CACHE"] = "/tmp/transformers_cache"
            os.makedirs("/tmp/transformers_cache", exist_ok=True)
            
            # ๋ฉ”๋ชจ๋ฆฌ ์ตœ์ ํ™” ์˜ต์…˜ ์ถ”๊ฐ€ - float32 ํƒ€์ž…์œผ๋กœ ํ†ต์ผ
            self.model = CLIPModel.from_pretrained(
                model_name,
                cache_dir='/tmp/huggingface_cache',
                low_cpu_mem_usage=True,
                torch_dtype=torch.float32  # float16์—์„œ float32๋กœ ๋ณ€๊ฒฝ
            ).to(device)
            
            # ์ž„๋ฒ ๋”ฉ ์ฐจ์› ์ €์žฅ
            self.text_embedding_dim = self.model.text_model.config.hidden_size
            self.image_embedding_dim = self.model.vision_model.config.hidden_size
            
            logger.info(f"ํ…์ŠคํŠธ ์ž„๋ฒ ๋”ฉ ์ฐจ์›: {self.text_embedding_dim}, ์ด๋ฏธ์ง€ ์ž„๋ฒ ๋”ฉ ์ฐจ์›: {self.image_embedding_dim}")
            
            self.processor = CLIPProcessor.from_pretrained(
                model_name,
                cache_dir='/tmp/huggingface_cache'
            )
            logger.info("CLIP ๋ชจ๋ธ ๋กœ๋“œ ์™„๋ฃŒ")
        except Exception as e:
            logger.error(f"CLIP ๋ชจ๋ธ ๋กœ๋“œ ์‹คํŒจ: {str(e)}")
            import traceback
            logger.error(traceback.format_exc())
            raise
            
    def encode_text(self, text):
        """
        ํ…์ŠคํŠธ๋ฅผ ์ž„๋ฒ ๋”ฉ ๋ฒกํ„ฐ๋กœ ๋ณ€ํ™˜
        
        Args:
            text (str or list): ์ธ์ฝ”๋”ฉํ•  ํ…์ŠคํŠธ ๋˜๋Š” ํ…์ŠคํŠธ ๋ฆฌ์ŠคํŠธ
            
        Returns:
            numpy.ndarray: ์ž„๋ฒ ๋”ฉ ๋ฒกํ„ฐ
        """
        if isinstance(text, str):
            text = [text]
            
        try:
            with torch.no_grad():
                # ํ…์ŠคํŠธ ์ธ์ฝ”๋”ฉ
                inputs = self.processor(text=text, return_tensors="pt", padding=True, truncation=True).to(self.device)
                text_features = self.model.get_text_features(**inputs)
                
                # ํ…์ŠคํŠธ ํŠน์„ฑ ์ •๊ทœํ™”
                text_embeddings = text_features / text_features.norm(dim=1, keepdim=True)
                
            return text_embeddings.cpu().numpy()
        except Exception as e:
            logger.error(f"ํ…์ŠคํŠธ ์ธ์ฝ”๋”ฉ ์ค‘ ์˜ค๋ฅ˜ ๋ฐœ์ƒ: {str(e)}")
            # ์ฐจ์›์ด ์ผ์น˜ํ•˜๋Š” 0 ๋ฒกํ„ฐ ๋ฐ˜ํ™˜
            return np.zeros((len(text), self.text_embedding_dim))
            
    def encode_image(self, image_source):
        """
        ์ด๋ฏธ์ง€๋ฅผ ์ž„๋ฒ ๋”ฉ ๋ฒกํ„ฐ๋กœ ๋ณ€ํ™˜
        
        Args:
            image_source: ์ธ์ฝ”๋”ฉํ•  ์ด๋ฏธ์ง€ (PIL Image, URL ๋˜๋Š” ์ด๋ฏธ์ง€ ๊ฒฝ๋กœ)
            
        Returns:
            numpy.ndarray: ์ž„๋ฒ ๋”ฉ ๋ฒกํ„ฐ
        """
        try:
            # ์ด๋ฏธ์ง€ ๋กœ๋“œ (URL, ํŒŒ์ผ ๊ฒฝ๋กœ, PIL ์ด๋ฏธ์ง€ ๊ฐ์ฒด ๋˜๋Š” Base64)
            if isinstance(image_source, str):
                if image_source.startswith('http'):
                    # URL์—์„œ ์ด๋ฏธ์ง€ ๋กœ๋“œ - ํƒ€์ž„์•„์›ƒ ์ถ”๊ฐ€
                    try:
                        response = requests.get(image_source, timeout=REQUEST_TIMEOUT)
                        if response.status_code == 200:
                            image = Image.open(BytesIO(response.content)).convert('RGB')
                        else:
                            logger.warning(f"์ด๋ฏธ์ง€ URL์—์„œ ์‘๋‹ต ์˜ค๋ฅ˜: {response.status_code}")
                            # ์˜ค๋ฅ˜ ์‹œ ๋”๋ฏธ ์ด๋ฏธ์ง€ ์ƒ์„ฑ (๊ฒ€์€์ƒ‰ ์ด๋ฏธ์ง€)
                            image = Image.new('RGB', (224, 224), color='black')
                    except requests.exceptions.RequestException as e:
                        logger.error(f"์ด๋ฏธ์ง€ URL ์ ‘๊ทผ ์ค‘ ์˜ค๋ฅ˜ ๋ฐœ์ƒ: {str(e)}")
                        # ์˜ค๋ฅ˜ ์‹œ ๋”๋ฏธ ์ด๋ฏธ์ง€ ์ƒ์„ฑ (๊ฒ€์€์ƒ‰ ์ด๋ฏธ์ง€)
                        image = Image.new('RGB', (224, 224), color='black')
                else:
                    # ๋กœ์ปฌ ํŒŒ์ผ์—์„œ ์ด๋ฏธ์ง€ ๋กœ๋“œ
                    try:
                        if os.path.exists(image_source):
                            image = Image.open(image_source).convert('RGB')
                        else:
                            logger.warning(f"์ด๋ฏธ์ง€ ํŒŒ์ผ์ด ์กด์žฌํ•˜์ง€ ์•Š์Œ: {image_source}")
                            # ํŒŒ์ผ์ด ์—†๋Š” ๊ฒฝ์šฐ ๋”๋ฏธ ์ด๋ฏธ์ง€ ์ƒ์„ฑ
                            image = Image.new('RGB', (224, 224), color='black')
                    except Exception as e:
                        logger.error(f"๋กœ์ปฌ ์ด๋ฏธ์ง€ ๋กœ๋“œ ์ค‘ ์˜ค๋ฅ˜: {str(e)}")
                        # ์˜ค๋ฅ˜ ์‹œ ๋”๋ฏธ ์ด๋ฏธ์ง€ ์ƒ์„ฑ
                        image = Image.new('RGB', (224, 224), color='black')
            else:
                # ์ด๋ฏธ PIL ์ด๋ฏธ์ง€ ๊ฐ์ฒด์ธ ๊ฒฝ์šฐ
                image = image_source.convert('RGB')
                
            with torch.no_grad():
                # ์ด๋ฏธ์ง€ ์ธ์ฝ”๋”ฉ
                inputs = self.processor(images=image, return_tensors="pt").to(self.device)
                image_features = self.model.get_image_features(**inputs)
                
                # ์ด๋ฏธ์ง€ ํŠน์„ฑ ์ •๊ทœํ™”
                image_embeddings = image_features / image_features.norm(dim=1, keepdim=True)
                
            return image_embeddings.cpu().numpy()
        except Exception as e:
            logger.error(f"์ด๋ฏธ์ง€ ์ธ์ฝ”๋”ฉ ์ค‘ ์˜ค๋ฅ˜ ๋ฐœ์ƒ: {str(e)}")
            # ์ฐจ์›์ด ์ผ์น˜ํ•˜๋Š” 0 ๋ฒกํ„ฐ ๋ฐ˜ํ™˜
            return np.zeros((1, self.image_embedding_dim))
    
    def calculate_similarity(self, embedding1, embedding2):
        """
        ๋‘ ์ž„๋ฒ ๋”ฉ ๊ฐ„์˜ ์œ ์‚ฌ๋„ ๊ณ„์‚ฐ
        
        Args:
            embedding1 (numpy.ndarray): ์ฒซ ๋ฒˆ์งธ ์ž„๋ฒ ๋”ฉ
            embedding2 (numpy.ndarray): ๋‘ ๋ฒˆ์งธ ์ž„๋ฒ ๋”ฉ
            
        Returns:
            float: ์œ ์‚ฌ๋„ ์ ์ˆ˜ (0~1 ์‚ฌ์ด)
        """
        try:
            # ์ฐจ์› ํ™•์ธ ๋ฐ ๋กœ๊น…
            logger.debug(f"์ž„๋ฒ ๋”ฉ1 shape: {embedding1.shape}, ์ž„๋ฒ ๋”ฉ2 shape: {embedding2.shape}")
            
            # ์ฐจ์›์ด ๋‹ค๋ฅธ ๊ฒฝ์šฐ ์˜ˆ์™ธ ์ฒ˜๋ฆฌ - ์ฐจ์›์ด ๋งž์ง€ ์•Š์œผ๋ฉด ๊ธฐ๋ณธ๊ฐ’ ๋ฐ˜ํ™˜
            if embedding1.shape[1] != embedding2.shape[1]:
                logger.warning(f"์ž„๋ฒ ๋”ฉ ์ฐจ์› ๋ถˆ์ผ์น˜: {embedding1.shape} vs {embedding2.shape}")
                return 0.5
                
            # ์ฝ”์‚ฌ์ธ ์œ ์‚ฌ๋„ ๊ณ„์‚ฐ
            similarity = np.dot(embedding1, embedding2.T)[0, 0]
                
            # ์œ ์‚ฌ๋„๋ฅผ 0~1 ๋ฒ”์œ„๋กœ ์ •๊ทœํ™”
            similarity = (similarity + 1) / 2
            return float(similarity)
        except Exception as e:
            logger.error(f"์œ ์‚ฌ๋„ ๊ณ„์‚ฐ ์ค‘ ์˜ค๋ฅ˜ ๋ฐœ์ƒ: {str(e)}")
            return 0.5  # ์˜ค๋ฅ˜ ์‹œ ์ค‘๊ฐ„๊ฐ’ ๋ฐ˜ํ™˜
        
    def encode_batch_texts(self, texts):
        """
        ์—ฌ๋Ÿฌ ํ…์ŠคํŠธ๋ฅผ ํ•œ ๋ฒˆ์— ์ž„๋ฒ ๋”ฉ
        
        Args:
            texts (list): ํ…์ŠคํŠธ ๋ชฉ๋ก
            
        Returns:
            numpy.ndarray: ์ž„๋ฒ ๋”ฉ ๋ฒกํ„ฐ ๋ฐฐ์—ด
        """
        # ๋ฐฐ์น˜ ์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•œ ์ฝ”๋“œ
        # ์‹ค์ œ ๊ตฌํ˜„์—์„œ๋Š” ๋ฉ”๋ชจ๋ฆฌ ํฌ๊ธฐ์— ๋”ฐ๋ผ ์ ์ ˆํ•œ ๋ฐฐ์น˜ ํฌ๊ธฐ ์กฐ์ • ํ•„์š”
        return self.encode_text(texts)

# ๋ชจ๋“ˆ ํ…Œ์ŠคํŠธ์šฉ ์ฝ”๋“œ
if __name__ == "__main__":
    # ๋ชจ๋ธ ์ดˆ๊ธฐํ™”
    clip_model = KoreanCLIPModel()
    
    # ์ƒ˜ํ”Œ ํ…์ŠคํŠธ ์ธ์ฝ”๋”ฉ
    sample_text = "๊ฒ€์€์ƒ‰ ์ง€๊ฐ‘์„ ์žƒ์–ด๋ฒ„๋ ธ์Šต๋‹ˆ๋‹ค. ํ˜„๊ธˆ๊ณผ ์นด๋“œ๊ฐ€ ๋“ค์–ด์žˆ์–ด์š”."
    text_embedding = clip_model.encode_text(sample_text)
    
    print(f"ํ…์ŠคํŠธ ์ž„๋ฒ ๋”ฉ shape: {text_embedding.shape}")
    
    # ์œ ์‚ฌ๋„ ๊ณ„์‚ฐ (ํ…์ŠคํŠธ๋งŒ)
    sample_text2 = "๊ฒ€์€์ƒ‰ ์ง€๊ฐ‘์„ ์ฐพ์•˜์Šต๋‹ˆ๋‹ค. ์•ˆ์— ํ˜„๊ธˆ๊ณผ ์นด๋“œ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค."
    text_embedding2 = clip_model.encode_text(sample_text2)
    
    similarity = clip_model.calculate_similarity(text_embedding, text_embedding2)
    print(f"ํ…์ŠคํŠธ ๊ฐ„ ์œ ์‚ฌ๋„: {similarity:.4f}")