Spaces:
Sleeping
Sleeping
Update models/clip_model.py
Browse files- models/clip_model.py +63 -22
models/clip_model.py
CHANGED
|
@@ -30,6 +30,9 @@ logger = logging.getLogger(__name__)
|
|
| 30 |
CLIP_MODEL_NAME = os.getenv('CLIP_MODEL_NAME', 'Bingsu/clip-vit-large-patch14-ko')
|
| 31 |
DEVICE = "cuda" if torch.cuda.is_available() and os.getenv('USE_GPU', 'True').lower() == 'true' else "cpu"
|
| 32 |
|
|
|
|
|
|
|
|
|
|
| 33 |
def preload_clip_model():
|
| 34 |
"""CLIP ๋ชจ๋ธ์ ์ฌ์ ์ ๋ค์ด๋ก๋ํ๊ณ ์บ์"""
|
| 35 |
try:
|
|
@@ -40,7 +43,8 @@ def preload_clip_model():
|
|
| 40 |
CLIPModel.from_pretrained(
|
| 41 |
CLIP_MODEL_NAME,
|
| 42 |
cache_dir='/tmp/huggingface_cache',
|
| 43 |
-
low_cpu_mem_usage=True # ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ ์ต์ ํ
|
|
|
|
| 44 |
)
|
| 45 |
|
| 46 |
CLIPProcessor.from_pretrained(
|
|
@@ -62,6 +66,7 @@ class KoreanCLIPModel:
|
|
| 62 |
"""CLIP ๋ชจ๋ธ ์ด๊ธฐํ - ๋ฉ๋ชจ๋ฆฌ ์ต์ ํ"""
|
| 63 |
self.device = device
|
| 64 |
self.model_name = model_name
|
|
|
|
| 65 |
|
| 66 |
logger.info(f"CLIP ๋ชจ๋ธ '{model_name}' ๋ก๋ ์ค (device: {device})...")
|
| 67 |
|
|
@@ -70,14 +75,20 @@ class KoreanCLIPModel:
|
|
| 70 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/transformers_cache"
|
| 71 |
os.makedirs("/tmp/transformers_cache", exist_ok=True)
|
| 72 |
|
| 73 |
-
# ๋ฉ๋ชจ๋ฆฌ ์ต์ ํ ์ต์
์ถ๊ฐ
|
| 74 |
self.model = CLIPModel.from_pretrained(
|
| 75 |
model_name,
|
| 76 |
cache_dir='/tmp/huggingface_cache',
|
| 77 |
low_cpu_mem_usage=True,
|
| 78 |
-
torch_dtype=torch.
|
| 79 |
).to(device)
|
| 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
self.processor = CLIPProcessor.from_pretrained(
|
| 82 |
model_name,
|
| 83 |
cache_dir='/tmp/huggingface_cache'
|
|
@@ -114,7 +125,8 @@ class KoreanCLIPModel:
|
|
| 114 |
return text_embeddings.cpu().numpy()
|
| 115 |
except Exception as e:
|
| 116 |
logger.error(f"ํ
์คํธ ์ธ์ฝ๋ฉ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}")
|
| 117 |
-
|
|
|
|
| 118 |
|
| 119 |
def encode_image(self, image_source):
|
| 120 |
"""
|
|
@@ -130,12 +142,32 @@ class KoreanCLIPModel:
|
|
| 130 |
# ์ด๋ฏธ์ง ๋ก๋ (URL, ํ์ผ ๊ฒฝ๋ก, PIL ์ด๋ฏธ์ง ๊ฐ์ฒด ๋๋ Base64)
|
| 131 |
if isinstance(image_source, str):
|
| 132 |
if image_source.startswith('http'):
|
| 133 |
-
# URL์์ ์ด๋ฏธ์ง ๋ก๋
|
| 134 |
-
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
else:
|
| 137 |
# ๋ก์ปฌ ํ์ผ์์ ์ด๋ฏธ์ง ๋ก๋
|
| 138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
else:
|
| 140 |
# ์ด๋ฏธ PIL ์ด๋ฏธ์ง ๊ฐ์ฒด์ธ ๊ฒฝ์ฐ
|
| 141 |
image = image_source.convert('RGB')
|
|
@@ -151,29 +183,38 @@ class KoreanCLIPModel:
|
|
| 151 |
return image_embeddings.cpu().numpy()
|
| 152 |
except Exception as e:
|
| 153 |
logger.error(f"์ด๋ฏธ์ง ์ธ์ฝ๋ฉ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}")
|
| 154 |
-
|
|
|
|
| 155 |
|
| 156 |
-
def calculate_similarity(self,
|
| 157 |
"""
|
| 158 |
-
|
| 159 |
|
| 160 |
Args:
|
| 161 |
-
|
| 162 |
-
|
| 163 |
|
| 164 |
Returns:
|
| 165 |
float: ์ ์ฌ๋ ์ ์ (0~1 ์ฌ์ด)
|
| 166 |
"""
|
| 167 |
-
|
| 168 |
-
#
|
| 169 |
-
|
| 170 |
-
else:
|
| 171 |
-
# ํ
์คํธ-์ด๋ฏธ์ง ์ ์ฌ๋ ๊ณ์ฐ (์ฝ์ฌ์ธ ์ ์ฌ๋)
|
| 172 |
-
similarity = np.dot(text_embedding, image_embedding.T)[0, 0]
|
| 173 |
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
|
| 178 |
def encode_batch_texts(self, texts):
|
| 179 |
"""
|
|
|
|
| 30 |
CLIP_MODEL_NAME = os.getenv('CLIP_MODEL_NAME', 'Bingsu/clip-vit-large-patch14-ko')
|
| 31 |
DEVICE = "cuda" if torch.cuda.is_available() and os.getenv('USE_GPU', 'True').lower() == 'true' else "cpu"
|
| 32 |
|
| 33 |
+
# ์์ฒญ ํ์์์ ์ค์
|
| 34 |
+
REQUEST_TIMEOUT = int(os.getenv('REQUEST_TIMEOUT', '10')) # 10์ด ํ์์์
|
| 35 |
+
|
| 36 |
def preload_clip_model():
|
| 37 |
"""CLIP ๋ชจ๋ธ์ ์ฌ์ ์ ๋ค์ด๋ก๋ํ๊ณ ์บ์"""
|
| 38 |
try:
|
|
|
|
| 43 |
CLIPModel.from_pretrained(
|
| 44 |
CLIP_MODEL_NAME,
|
| 45 |
cache_dir='/tmp/huggingface_cache',
|
| 46 |
+
low_cpu_mem_usage=True, # ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ ์ต์ ํ
|
| 47 |
+
torch_dtype=torch.float32 # float32 ํ์
์ผ๋ก ํต์ผ
|
| 48 |
)
|
| 49 |
|
| 50 |
CLIPProcessor.from_pretrained(
|
|
|
|
| 66 |
"""CLIP ๋ชจ๋ธ ์ด๊ธฐํ - ๋ฉ๋ชจ๋ฆฌ ์ต์ ํ"""
|
| 67 |
self.device = device
|
| 68 |
self.model_name = model_name
|
| 69 |
+
self.embedding_dim = None # ์ถ๊ฐ: ์๋ฒ ๋ฉ ์ฐจ์ ์ ์ฅ
|
| 70 |
|
| 71 |
logger.info(f"CLIP ๋ชจ๋ธ '{model_name}' ๋ก๋ ์ค (device: {device})...")
|
| 72 |
|
|
|
|
| 75 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/transformers_cache"
|
| 76 |
os.makedirs("/tmp/transformers_cache", exist_ok=True)
|
| 77 |
|
| 78 |
+
# ๋ฉ๋ชจ๋ฆฌ ์ต์ ํ ์ต์
์ถ๊ฐ - float32 ํ์
์ผ๋ก ํต์ผ
|
| 79 |
self.model = CLIPModel.from_pretrained(
|
| 80 |
model_name,
|
| 81 |
cache_dir='/tmp/huggingface_cache',
|
| 82 |
low_cpu_mem_usage=True,
|
| 83 |
+
torch_dtype=torch.float32 # float16์์ float32๋ก ๋ณ๊ฒฝ
|
| 84 |
).to(device)
|
| 85 |
|
| 86 |
+
# ์๋ฒ ๋ฉ ์ฐจ์ ์ ์ฅ
|
| 87 |
+
self.text_embedding_dim = self.model.text_model.config.hidden_size
|
| 88 |
+
self.image_embedding_dim = self.model.vision_model.config.hidden_size
|
| 89 |
+
|
| 90 |
+
logger.info(f"ํ
์คํธ ์๋ฒ ๋ฉ ์ฐจ์: {self.text_embedding_dim}, ์ด๋ฏธ์ง ์๋ฒ ๋ฉ ์ฐจ์: {self.image_embedding_dim}")
|
| 91 |
+
|
| 92 |
self.processor = CLIPProcessor.from_pretrained(
|
| 93 |
model_name,
|
| 94 |
cache_dir='/tmp/huggingface_cache'
|
|
|
|
| 125 |
return text_embeddings.cpu().numpy()
|
| 126 |
except Exception as e:
|
| 127 |
logger.error(f"ํ
์คํธ ์ธ์ฝ๋ฉ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}")
|
| 128 |
+
# ์ฐจ์์ด ์ผ์นํ๋ 0 ๋ฒกํฐ ๋ฐํ
|
| 129 |
+
return np.zeros((len(text), self.text_embedding_dim))
|
| 130 |
|
| 131 |
def encode_image(self, image_source):
|
| 132 |
"""
|
|
|
|
| 142 |
# ์ด๋ฏธ์ง ๋ก๋ (URL, ํ์ผ ๊ฒฝ๋ก, PIL ์ด๋ฏธ์ง ๊ฐ์ฒด ๋๋ Base64)
|
| 143 |
if isinstance(image_source, str):
|
| 144 |
if image_source.startswith('http'):
|
| 145 |
+
# URL์์ ์ด๋ฏธ์ง ๋ก๋ - ํ์์์ ์ถ๊ฐ
|
| 146 |
+
try:
|
| 147 |
+
response = requests.get(image_source, timeout=REQUEST_TIMEOUT)
|
| 148 |
+
if response.status_code == 200:
|
| 149 |
+
image = Image.open(BytesIO(response.content)).convert('RGB')
|
| 150 |
+
else:
|
| 151 |
+
logger.warning(f"์ด๋ฏธ์ง URL์์ ์๋ต ์ค๋ฅ: {response.status_code}")
|
| 152 |
+
# ์ค๋ฅ ์ ๋๋ฏธ ์ด๋ฏธ์ง ์์ฑ (๊ฒ์์ ์ด๋ฏธ์ง)
|
| 153 |
+
image = Image.new('RGB', (224, 224), color='black')
|
| 154 |
+
except requests.exceptions.RequestException as e:
|
| 155 |
+
logger.error(f"์ด๋ฏธ์ง URL ์ ๊ทผ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}")
|
| 156 |
+
# ์ค๋ฅ ์ ๋๋ฏธ ์ด๋ฏธ์ง ์์ฑ (๊ฒ์์ ์ด๋ฏธ์ง)
|
| 157 |
+
image = Image.new('RGB', (224, 224), color='black')
|
| 158 |
else:
|
| 159 |
# ๋ก์ปฌ ํ์ผ์์ ์ด๋ฏธ์ง ๋ก๋
|
| 160 |
+
try:
|
| 161 |
+
if os.path.exists(image_source):
|
| 162 |
+
image = Image.open(image_source).convert('RGB')
|
| 163 |
+
else:
|
| 164 |
+
logger.warning(f"์ด๋ฏธ์ง ํ์ผ์ด ์กด์ฌํ์ง ์์: {image_source}")
|
| 165 |
+
# ํ์ผ์ด ์๋ ๊ฒฝ์ฐ ๋๋ฏธ ์ด๋ฏธ์ง ์์ฑ
|
| 166 |
+
image = Image.new('RGB', (224, 224), color='black')
|
| 167 |
+
except Exception as e:
|
| 168 |
+
logger.error(f"๋ก์ปฌ ์ด๋ฏธ์ง ๋ก๋ ์ค ์ค๋ฅ: {str(e)}")
|
| 169 |
+
# ์ค๋ฅ ์ ๋๋ฏธ ์ด๋ฏธ์ง ์์ฑ
|
| 170 |
+
image = Image.new('RGB', (224, 224), color='black')
|
| 171 |
else:
|
| 172 |
# ์ด๋ฏธ PIL ์ด๋ฏธ์ง ๊ฐ์ฒด์ธ ๊ฒฝ์ฐ
|
| 173 |
image = image_source.convert('RGB')
|
|
|
|
| 183 |
return image_embeddings.cpu().numpy()
|
| 184 |
except Exception as e:
|
| 185 |
logger.error(f"์ด๋ฏธ์ง ์ธ์ฝ๋ฉ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}")
|
| 186 |
+
# ์ฐจ์์ด ์ผ์นํ๋ 0 ๋ฒกํฐ ๋ฐํ
|
| 187 |
+
return np.zeros((1, self.image_embedding_dim))
|
| 188 |
|
| 189 |
+
def calculate_similarity(self, embedding1, embedding2):
|
| 190 |
"""
|
| 191 |
+
๋ ์๋ฒ ๋ฉ ๊ฐ์ ์ ์ฌ๋ ๊ณ์ฐ
|
| 192 |
|
| 193 |
Args:
|
| 194 |
+
embedding1 (numpy.ndarray): ์ฒซ ๋ฒ์งธ ์๋ฒ ๋ฉ
|
| 195 |
+
embedding2 (numpy.ndarray): ๋ ๋ฒ์งธ ์๋ฒ ๋ฉ
|
| 196 |
|
| 197 |
Returns:
|
| 198 |
float: ์ ์ฌ๋ ์ ์ (0~1 ์ฌ์ด)
|
| 199 |
"""
|
| 200 |
+
try:
|
| 201 |
+
# ์ฐจ์ ํ์ธ ๋ฐ ๋ก๊น
|
| 202 |
+
logger.debug(f"์๋ฒ ๋ฉ1 shape: {embedding1.shape}, ์๋ฒ ๋ฉ2 shape: {embedding2.shape}")
|
|
|
|
|
|
|
|
|
|
| 203 |
|
| 204 |
+
# ์ฐจ์์ด ๋ค๋ฅธ ๊ฒฝ์ฐ ์์ธ ์ฒ๋ฆฌ - ์ฐจ์์ด ๋ง์ง ์์ผ๋ฉด ๊ธฐ๋ณธ๊ฐ ๋ฐํ
|
| 205 |
+
if embedding1.shape[1] != embedding2.shape[1]:
|
| 206 |
+
logger.warning(f"์๋ฒ ๋ฉ ์ฐจ์ ๋ถ์ผ์น: {embedding1.shape} vs {embedding2.shape}")
|
| 207 |
+
return 0.5
|
| 208 |
+
|
| 209 |
+
# ์ฝ์ฌ์ธ ์ ์ฌ๋ ๊ณ์ฐ
|
| 210 |
+
similarity = np.dot(embedding1, embedding2.T)[0, 0]
|
| 211 |
+
|
| 212 |
+
# ์ ์ฌ๋๋ฅผ 0~1 ๋ฒ์๋ก ์ ๊ทํ
|
| 213 |
+
similarity = (similarity + 1) / 2
|
| 214 |
+
return float(similarity)
|
| 215 |
+
except Exception as e:
|
| 216 |
+
logger.error(f"์ ์ฌ๋ ๊ณ์ฐ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}")
|
| 217 |
+
return 0.5 # ์ค๋ฅ ์ ์ค๊ฐ๊ฐ ๋ฐํ
|
| 218 |
|
| 219 |
def encode_batch_texts(self, texts):
|
| 220 |
"""
|