|
import streamlit as st
|
|
|
|
|
|
from langchain.llms import HuggingFace
|
|
|
|
|
|
def load_answer(question):
|
|
|
|
llm = HuggingFace(model_name="google/flan-t5-large")
|
|
answer = llm(question)
|
|
return answer
|
|
|
|
|
|
st.set_page_config(page_title="LangChain Demo", page_icon="π¦")
|
|
st.header("π¦οΈπ LangChain Demo")
|
|
|
|
|
|
def get_text():
|
|
input_text = st.text_input("You: ", key="input")
|
|
return input_text
|
|
|
|
user_input = get_text()
|
|
response = load_answer(user_input)
|
|
|
|
submit = st.button("Generate")
|
|
|
|
|
|
if submit:
|
|
st.subheader("Answer:")
|
|
|
|
st.write(response) |