Spaces:
Runtime error
Runtime error
Alex Stoken
commited on
Commit
·
ca487d2
1
Parent(s):
7f59d8a
add app.py and requirements
Browse files- app.py +258 -0
- requirements.txt +3 -0
app.py
ADDED
|
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import datetime
|
| 4 |
+
import time
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import os
|
| 7 |
+
|
| 8 |
+
###########
|
| 9 |
+
# other API's of interest: https://medium.com/@imdipto/best-free-alternatives-to-the-wunderground-weather-api-21acb22450e6
|
| 10 |
+
##########
|
| 11 |
+
OPENWEATHER_API_KEY = os.environ.get('OPENWEATHER_API_KEY')
|
| 12 |
+
WEATHERAPI_KEY = os.environ.get('WEATHERAPI_KEY')
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def openweather_to_result(lat, lon, gmt_time):
|
| 16 |
+
"""
|
| 17 |
+
API docs: https://openweathermap.org/api/one-call-api#current
|
| 18 |
+
|
| 19 |
+
Parameters
|
| 20 |
+
------------
|
| 21 |
+
lat [float]: decimal valued latitude
|
| 22 |
+
lon [float]: decimal valued longitude
|
| 23 |
+
gmt_time [datetime object]: time of desired forecast, in gmt and as python datetime object
|
| 24 |
+
|
| 25 |
+
Returns
|
| 26 |
+
--------
|
| 27 |
+
cloud_pct Tuple(List, List): list of cloud percent and corresponding time for times within 1.5 hours of input GMT time
|
| 28 |
+
"""
|
| 29 |
+
exclude_parts = 'current,minutely,daily,alerts'
|
| 30 |
+
request_url = f'https://api.openweathermap.org/data/2.5/onecall?lat={lat}&lon={lon}&exclude={exclude_parts}&appid={OPENWEATHER_API_KEY}'
|
| 31 |
+
|
| 32 |
+
response = requests.get(request_url)
|
| 33 |
+
|
| 34 |
+
data = response.json()
|
| 35 |
+
|
| 36 |
+
cloud_pct = []
|
| 37 |
+
forecast_times = []
|
| 38 |
+
|
| 39 |
+
# timeframe around input time to check cloud % for
|
| 40 |
+
timeframe = datetime.timedelta(hours=1, minutes=30)
|
| 41 |
+
for hour in data['hourly']:
|
| 42 |
+
# dt property is unix utc time of forecasted data - convert this to python datetime object
|
| 43 |
+
forecast_time = datetime.datetime.fromtimestamp(
|
| 44 |
+
hour['dt'], tz=datetime.timezone.utc)
|
| 45 |
+
if abs(forecast_time - gmt_time) <= timeframe:
|
| 46 |
+
# cloud pct is stored in each hour at top level
|
| 47 |
+
cloud_pct.append(hour['clouds'])
|
| 48 |
+
forecast_times.append(forecast_time)
|
| 49 |
+
|
| 50 |
+
return cloud_pct, forecast_times
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def weatherapi_to_result(lat, lon, gmt_time):
|
| 54 |
+
"""
|
| 55 |
+
API docs: https://www.weatherapi.com/docs/
|
| 56 |
+
TODO: implement wrapper instead https://github.com/weatherapicom/weatherapi-Python
|
| 57 |
+
|
| 58 |
+
Parameters
|
| 59 |
+
------------
|
| 60 |
+
lat [float]: decimal valued latitude
|
| 61 |
+
lon [float]: decimal values longitude
|
| 62 |
+
gmt_time [datetime object]: time of desired forecast, in gmt and as python datetime object
|
| 63 |
+
|
| 64 |
+
Returns
|
| 65 |
+
--------
|
| 66 |
+
cloud_pct Tuple(List, List): list of cloud percent and corresponding time for times within 1.5 hours of input GMT time
|
| 67 |
+
"""
|
| 68 |
+
request_url = f'http://api.weatherapi.com/v1/forecast.json?key={WEATHERAPI_KEY}&q={lat},{lon}&days=2&alerts=no'
|
| 69 |
+
response = requests.get(request_url)
|
| 70 |
+
|
| 71 |
+
data = response.json()
|
| 72 |
+
|
| 73 |
+
timezone = data['location']['tz_id']
|
| 74 |
+
|
| 75 |
+
cloud_pct = []
|
| 76 |
+
forecast_times = []
|
| 77 |
+
|
| 78 |
+
# quick error handling to make sure input time python object has "timezone" property attached
|
| 79 |
+
try:
|
| 80 |
+
gmt_time = gmt_time.astimezone(datetime.timezone.utc)
|
| 81 |
+
except:
|
| 82 |
+
gmt_time = gmt_time.tz_localize('utc')
|
| 83 |
+
|
| 84 |
+
# timeframe around input time to check cloud % for
|
| 85 |
+
timeframe = datetime.timedelta(hours=1, minutes=30)
|
| 86 |
+
|
| 87 |
+
# this api is first divided into days, then hours
|
| 88 |
+
for day in data['forecast']['forecastday']:
|
| 89 |
+
for hour in day['hour']:
|
| 90 |
+
# time_epoch contains unix epoch time in GMT/UTC
|
| 91 |
+
#forecast_time = datetime.datetime.fromtimestamp(hour['time_epoch'], ZoneInfo(timezone))
|
| 92 |
+
forecast_time = datetime.datetime.fromtimestamp(
|
| 93 |
+
hour['time_epoch'], datetime.timezone.utc)
|
| 94 |
+
if abs(forecast_time - gmt_time) <= timeframe:
|
| 95 |
+
cloud_pct.append(hour['cloud'])
|
| 96 |
+
forecast_times.append(
|
| 97 |
+
forecast_time.astimezone(datetime.timezone.utc))
|
| 98 |
+
|
| 99 |
+
return cloud_pct, forecast_times
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def met_to_result(lat, lon, gmt_time):
|
| 103 |
+
"""
|
| 104 |
+
API doc: https://api.met.no/weatherapi/locationforecast/2.0/documentation
|
| 105 |
+
How to: https://api.met.no/doc/locationforecast/HowTO
|
| 106 |
+
|
| 107 |
+
Parameters
|
| 108 |
+
------------
|
| 109 |
+
lat [float]: decimal valued latitude
|
| 110 |
+
lon [float]: decimal values longitude
|
| 111 |
+
gmt_time [datetime object]: time of desired forecast, in gmt and as python datetime object
|
| 112 |
+
|
| 113 |
+
Returns
|
| 114 |
+
--------
|
| 115 |
+
cloud_pct Tuple(List, List): list of cloud percent and corresponding time for times within 1.5 hours of input GMT time
|
| 116 |
+
"""
|
| 117 |
+
|
| 118 |
+
# set user agent https://stackoverflow.com/questions/10606133/sending-user-agent-using-requests-library-in-python
|
| 119 |
+
# must be unique per API Terms of Service https://api.met.no/doc/TermsOfService
|
| 120 |
+
headers = {
|
| 121 |
+
'User-Agent': 'NASAEarthScienceRemoteSensingUnit [email protected]'}
|
| 122 |
+
|
| 123 |
+
request_url = f'https://api.met.no/weatherapi/locationforecast/2.0/compact?lat={lat}&lon={lon}'
|
| 124 |
+
|
| 125 |
+
response = requests.get(request_url, headers=headers)
|
| 126 |
+
|
| 127 |
+
data = response.json()
|
| 128 |
+
|
| 129 |
+
cloud_pct = []
|
| 130 |
+
forecast_times = []
|
| 131 |
+
|
| 132 |
+
# timeframe around input time to check cloud % for
|
| 133 |
+
timeframe = datetime.timedelta(hours=1, minutes=30)
|
| 134 |
+
|
| 135 |
+
# walk through json return
|
| 136 |
+
for hour in data['properties']['timeseries']:
|
| 137 |
+
# time is utc formatted time https://api.met.no/doc/locationforecast/FAQ
|
| 138 |
+
forecast_time = datetime.datetime.strptime(
|
| 139 |
+
hour['time'], '%Y-%m-%dT%H:%M:%SZ').replace(tzinfo=datetime.timezone.utc)
|
| 140 |
+
# check if time of forecast is withing "timeframe" of desired time
|
| 141 |
+
if abs(forecast_time - gmt_time) <= timeframe:
|
| 142 |
+
# grab cloud pct from location within the nested json, add to list
|
| 143 |
+
cloud_pct.append(hour['data']['instant']
|
| 144 |
+
['details']['cloud_area_fraction'])
|
| 145 |
+
# add time of forecast to list. Should be an "on the hour" time
|
| 146 |
+
forecast_times.append(forecast_time)
|
| 147 |
+
|
| 148 |
+
return cloud_pct, forecast_times
|
| 149 |
+
|
| 150 |
+
################
|
| 151 |
+
# generate text
|
| 152 |
+
################
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
def file_to_cloud_listing(input_file, services):
|
| 156 |
+
"""
|
| 157 |
+
|
| 158 |
+
Args:
|
| 159 |
+
input_file (Union[str, gradio FileType]): input csv file with LAT, LON, SITE, GMT cols
|
| 160 |
+
services (List): list of weather api servies to check
|
| 161 |
+
|
| 162 |
+
Returns:
|
| 163 |
+
str: formatted string with weather predictions for locations
|
| 164 |
+
"""
|
| 165 |
+
# this works if the input is from gradio. Then the file has an name property
|
| 166 |
+
try:
|
| 167 |
+
sites = pd.read_csv(input_file.name, parse_dates=['GMT'])
|
| 168 |
+
using_gradio = True
|
| 169 |
+
except:
|
| 170 |
+
# this is for input from a script or command line
|
| 171 |
+
sites = pd.read_csv(input_file, parse_dates=['GMT'])
|
| 172 |
+
using_gradio = False
|
| 173 |
+
start = time.perf_counter()
|
| 174 |
+
date_format = "%H:%M"
|
| 175 |
+
text = ''
|
| 176 |
+
# each row is a site. Get weather data and then print it for each service for each site.
|
| 177 |
+
for row_idx, row in sites.iterrows():
|
| 178 |
+
#time_of_interest = datetime.datetime.strptime(row.GMT, '%m/%d/%y %H:%M')
|
| 179 |
+
text += check_row(row, services, date_format)
|
| 180 |
+
text += f'{"="*60}\n'
|
| 181 |
+
|
| 182 |
+
return text
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
def check_row(row, services, date_format="%H:%M"):
|
| 186 |
+
"""Check a row of data (a pd.Series with LAT, LON, GMT, SITE cols)
|
| 187 |
+
|
| 188 |
+
Args:
|
| 189 |
+
row (pd.Series): pd.Series with LAT, LON, GMT, SITE cols)
|
| 190 |
+
services (List): List of weather services (['OpenWeather', 'MET (Norwegian)', 'WeatherAPI'] or subset)
|
| 191 |
+
date_format (str, optional): Format for printing time of site pass over. Defaults to "%H:%M".
|
| 192 |
+
|
| 193 |
+
Returns:
|
| 194 |
+
str: formatted str of text for weather vals
|
| 195 |
+
"""
|
| 196 |
+
text = ""
|
| 197 |
+
|
| 198 |
+
text += f'{"Location":13}:\t\t{row.SITE} @ {row["GMT"].strftime(date_format)} GMT\n'
|
| 199 |
+
|
| 200 |
+
if not isinstance(row.GMT, datetime.datetime):
|
| 201 |
+
GMT = row["GMT"].to_pydatetime()
|
| 202 |
+
else:
|
| 203 |
+
GMT = row["GMT"]
|
| 204 |
+
GMT = GMT.replace(tzinfo=datetime.timezone.utc)
|
| 205 |
+
if 'OpenWeather' in services:
|
| 206 |
+
try:
|
| 207 |
+
cldp, times = openweather_to_result(row.LAT, row.LON, GMT)
|
| 208 |
+
text += format_cldp_and_time("OpenWeather", cldp=cldp, times=times)
|
| 209 |
+
except Exception as e:
|
| 210 |
+
text += f'OpenWeather:\t\tError {e} in API processing\n'
|
| 211 |
+
if 'MET (Norwegian)' in services:
|
| 212 |
+
try:
|
| 213 |
+
cldp, times = met_to_result(row.LAT, row.LON, GMT)
|
| 214 |
+
text += format_cldp_and_time("Norwegian", cldp=cldp)
|
| 215 |
+
except Exception as e:
|
| 216 |
+
text += f'Norwegian:\t\tError {e} in API processing\n'
|
| 217 |
+
if 'WeatherAPI' in services:
|
| 218 |
+
try:
|
| 219 |
+
cldp, times = weatherapi_to_result(row.LAT, row.LON, GMT)
|
| 220 |
+
text += format_cldp_and_time("WeatherAPI", cldp=cldp)
|
| 221 |
+
except Exception as e:
|
| 222 |
+
text += f'WeatherAPI:\t\tError {e} in API processing\n'
|
| 223 |
+
|
| 224 |
+
return text
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
def format_cldp_and_time(api_name, cldp, times=None):
|
| 228 |
+
"""Formats output text for lists of cloud percents and forecast times
|
| 229 |
+
|
| 230 |
+
Args:
|
| 231 |
+
api_name ([type]): Name of weather source.
|
| 232 |
+
cldp (List): List of floating point cloud percentage values.
|
| 233 |
+
times (List, optional): List of forecast times, as datetime objects. Defaults to None.
|
| 234 |
+
|
| 235 |
+
Returns:
|
| 236 |
+
str: formatted text for printing
|
| 237 |
+
"""
|
| 238 |
+
text = ''
|
| 239 |
+
date_format = "%H:%M"
|
| 240 |
+
if times is not None:
|
| 241 |
+
text += f'{"Forecast Time:":13}\t\t' + ' '.join(time.strftime(date_format)
|
| 242 |
+
for time in times) + "\n"
|
| 243 |
+
|
| 244 |
+
text += f'{api_name:13}:\t\t{" ".join(f"{p:<6.0f}" for p in cldp)}\n'
|
| 245 |
+
return text
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
if __name__ == '__main__':
|
| 249 |
+
inputs = [gr.inputs.File(label='Site File with Lat/Lon and GMT Time'), gr.inputs.CheckboxGroup(label='Weather Services',
|
| 250 |
+
choices=['OpenWeather', 'MET (Norwegian)', 'WeatherAPI'], default=['OpenWeather', 'MET (Norwegian)'])]
|
| 251 |
+
outputs = gr.outputs.Textbox(
|
| 252 |
+
label='Cloud % for hour before, hour of, hour after')
|
| 253 |
+
css = """* {
|
| 254 |
+
font-family: "Lucida Console", "Courier New", monospace !important;/* <-- fonts */
|
| 255 |
+
}"""
|
| 256 |
+
gr.Interface(fn=file_to_cloud_listing, inputs=inputs, css=css, outputs=outputs,
|
| 257 |
+
allow_screenshot=False).launch(auth=("es", 'rs'), share=True)
|
| 258 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pandas
|
| 2 |
+
gradio
|
| 3 |
+
requests
|